

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Bis(perfluoroorganyl)bromonium salts $[(R_F)_2Br]Y(R_F = aryl, alkenyl, and alkynyl)$

(2)

Hermann-Josef Frohn^{a,*}, Matthias Giesen^a, Dirk Welting^a, Vadim V. Bardin^b

^a Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, D-47048 Duisburg, Germany
^bN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history: Received 6 May 2010 Received in revised form 8 June 2010 Accepted 9 June 2010 Available online 17 June 2010

Keywords:

Bromine trifluoride Perfluoroorganylbromine difluorides Bis(perfluoroorganyl)bromonium salts Difluorobromonium salts Perfluoroorganylboron difluoride Tris(pentafluorophenyl)borane Pentafluorophenyltrifluorosilane Pentafluorophenyltrimethylsilane Perfluoroorganyltrifluoroborate salts NMR spectroscopy

ABSTRACT

Bromonium salts $[(R_F)_2Br]Y$ with perfluorinated groups $R_F=C_6F_5$, $CF_3CF=CF$, $C_2F_5CF=CF$, and $CF_3C=C$ were isolated from reactions of BrF₃ with R_FBF_2 in weakly coordinating solvents (wcs) like $CF_3CH_2CH_2$ (PFP) or $CF_3CH_2CF_2CH_3$ (PFB) in 30–90% yields. $C_6F_5BF_2$ formed independent of the stoichiometry only $[(C_6F_5)_2Br][BF_4]$. 1:2 reactions of BrF₃ and silanes $C_6F_5SiY_3$ (Y = F, Me) ended with different products – $C_6F_5Br_2$ or $[(C_6F_5)_2Br][SiF_5]$ – as pure individuals, depending on Y and on the reaction temperature (Y = F). With $C_6F_5SiF_3$ at ≥ -30 °C $[(C_6F_5)_2Br][SiF_5]$ resulted in 92% yield whereas the reaction with less Lewis acidic $C_6F_5SiM_3$ only led to $C_6F_5BF_2$ (58%). The interaction of K[$C_6F_5BF_3$] with BrF₃ or [BrF₂][SbF₆] in anhydrous HF gave $[(C_6F_5)_2Br][SbF_6]$. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of $C_6F_1_3BF_2$ with BrF₃ or of K[$C_6F_5_1BF_3$] with [BrF₂][SbF₆] failed. The 3:2 reactions of BrF₃ with $(C_6F_5)_2Br][(C_6F_5)_2Br][C_6F_5]_2Br][C_6F_5]_2Br]$ and the fact of R_5 (R_5) as presented in R_5 or R_5 (R_5) as R_5 or R_5 (R_5) and R_5 or R_5 (R_5) as R_5 and R_5 (R_5) as R_5 (R_5) as R_5 and R_5 (R_5) as R_5 (R_5) as R_5 and R_5 and R

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The first preparation of a bis(organyl)bromonium salt was reported in 1955 by Nesmeyanov. He obtained a bis(phenyl)bromonium salt by the decomposition of benzenediazonium tetra-fluoroborate in bromobenzene [1]. Improvement allowed to increase the yield of isolated bis(phenyl)bromonium tetrafluoroborate to 6-7% [2]. Further progress was achieved by reactions of BrF₃ with benzenes, C₆H₅R [3], bis(aryl)mercury, Ar₂Hg [4], and tetrakis(aryl)stannanes, Ar₄Sn [5] (Eqs. (1)–(3)).

$$\begin{split} & BrF_3 + 2C_6H_5R + BF_3 \cdot OEt_2 \overset{CH_2Cl_2, -70\,^\circ C}{\longrightarrow} [(RC_6H_4)_2Br][BF_4] + \cdots \\ & R = H(50\%), 4\text{-}F(41\%), 4\text{-}Cl(13\%), 3\text{-}MeOC(O)(20\%), \end{split}$$

 $\begin{array}{l} BrF_3+2(RC_6H_4)_2Hg+BF_3\cdot OEt_2 \overset{CH_3CN,CH_2Cl_2,-70\,^\circ C}{\longrightarrow} [(RC_6H_4)_2Br][BF_4]+\cdots \\ R=H,4\text{-}F,4\text{-}Cl,3\text{-}EtOC(O),4\text{-}CH_3(16\text{-}96\%) \end{array}$

 $\begin{array}{l} BrF_{3}+(RC_{6}H_{4})_{4}Sn+BF_{3}\cdot OEt_{2} & \stackrel{CH_{3}CN,CH_{2}Cl_{2},-70\ ^{\circ}C}{\longrightarrow} [(RC_{6}H_{4})_{2}Br][BF_{4}]+ \cdots \\ R=H,4\text{-}CH_{3}O,4\text{-}CH_{3}(52\text{-}96\%) \end{array} \tag{3}$

An alternative route to symmetric bromonium salts consists in the electrophilic alkylation of alkyl bromides with carbocations [6,7] (Eq. (4)).

 $\begin{array}{l} AlkBr + AlkF + SbF_{5} \stackrel{SO_{2,-70} \circ C}{\longrightarrow} [(Alk)_{2})Br][SbF_{6}] \\ Alk = Me, Et, i\text{-}Pr, cyclo-C_{3}H_{5} \end{array} \tag{4}$

All methods compiled before are not adequate for the preparation of bis(perfluoroorganyl)bromonium salts, [(R_F)₂Br]Y, where R_F represent perfluorinated alkyl, alkenyl, alkynyl, and aryl groups. For example, the reaction of C₆F₅H with BrF₃ in weakly coordinating solvents (CCl₂FCClF₂, 0 °C [8], SO₂ClF, -80 °C [9,10]), or with [BrF₂]Y $(Y = BF_4, SbF_6) (SO_2ClF, -80 \degree C [9,10])$ and with BrF_3 or $[BrF_2][SbF_6]$ in a highly acidic solvent (aHF, -70 °C) led to C₆F₅Br and polyfluorinated 1-X-cyclohexa-1,4-dienes (X = H, Br). In contrast to the successful electrophilic alkylation of RBr with CH₃F-SbF₅ in SO_2 to methylbromonium salts, $[CH_3(R)Br][SbF_6]$, the attempted methylation of 1,4-dibromotetrafluorobenzene failed [7]. Nesmeyanov reported the inertness of BrF_3 towards $(C_6F_5)_2Hg$ [4] and $(C_6F_5)_4$ Sn [5] (CH₂Cl₂ + 2CH₃CN + 3BF₃·OEt₂) at -78 to -25 °C and the decomposition of the solvent and the organometallic compounds at higher temperature. Later the formation of C₆F₅BrF₂ was shown besides $C_6F_5R(R = H, F, Br, C_6F_5)$ when BrF_3 was reacted with $(C_6F_5)_2M$ (M = Hg, Cd, Zn) in the absence of a Lewis acid (CH₂Cl₂ + 2 CH₃CN, -78 to -25 °C) and no bromonium salts, $[(C_6F_5)_2Br]$ Y, were found under those non-acidic conditions [11].

^{*} Corresponding author. Tel.: +49 203 379 3310; fax: +49 203 379 2231. *E-mail address*: h-j.frohn@uni-due.de (H.-J. Frohn).

^{0022-1139/\$ –} see front matter \circledcirc 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2010.06.006

Up to now the bis(pentafluorophenyl)bromonium salts, $[(C_6F_5)_2Br]Y$ (Y = BF₄, AsF₆, SbF₆, PF₆), are the only reported bromonium compounds bearing perfluorinated organic groups at bromine(III) (see review [12]). Salt $[(C_6F_5)_2Br][AsF_6]$ was the product of pentafluorophenylation of C_6F_5Br with molten $[C_6F_5Xe][AsF_6]$ but only in 6% yield [13]. $[(C_6F_5)_2Br][BF_4]$ was obtained by the reaction of $C_6F_5BrF_2$ with bis(pentafluorophenyl)cadmium and BF₃·NCCH₃ in a satisfactory yield and in excellent yield from BrF₃ and $(C_6F_5)_2BF$ [11] (Eqs. (5) and (6)).

Hexafluorometallates $[(C_6F_5)_2Br][EF_6]$ were prepared from the parent tetrafluoroborate by metathesis with K[PF_6] (E = P) or by displacement of BF₃ using stronger Lewis acids like AsF₅ or SbF₅ [11] (E = As, Sb).

$$Cd(C_{6}F_{5})_{2} + 2C_{6}F_{5}BrF_{2} + 2BF_{3} \cdot NCCH_{3} \xrightarrow[-78 \text{ to } 20 \,^{\circ}\text{C}]{}^{CH_{2}Cl_{2}/ < MeCN} [(C_{6}F_{5})_{2}Br][BF_{4}]$$
(5)

$$(C_6F_5)_2BF + BrF_3 \frac{CH_2CI_2/
(6)$$

*MeCN was added to increase the solubility of BrF_3 at low temperatures.

Based on our experience in the preparation of polyfluoroorganylxenonium salts [14,15] and polyfluoroorgano derivatives of polyvalent iodine and bromine [12], we studied selected promising routes to bis(perfluoroorganyl)bromonium salts. One was based on the direct introduction of two perfluoroorganyl groups into BrF₃ or [BrF₂]⁺ with different types of organoboron compounds (R_FBF₂, (C₆F₅)₃B, M[R_FBF₃]). The second used pentafluorophenyl silanes, C₆F₅SiF₃ and C₆F₅SiMe₃, of different Lewis acidity.

2. Results

2.1. New basic information about bromine trifluoride in organic solvents

Bromine trifluoride is a highly reactive compound and the choice of appropriate weakly coordinating organic solvents for reactions with Lewis acidic perfluoroorganylboranes and -silanes is very limited. In the past some reactions of BrF₃ with organic compounds were performed in SO₂ClF, CCl₃F, and CCl₂FCClF₂. To increase the solubility in dichloromethane at low temperature small quantities (2-4 equiv.) of CH₃CN were added. In the absence of MeCN, CH₂Cl₂ reacts with BrF₃ above ca. -20 °C. Bromine trifluoride is moderately soluble in trichlorofluoromethane, but above 5–10 °C it reacts with CCl₃F to produce mainly CCl₂F₂. Saturated solutions of BrF3 in 1,1,2-trichlorotrifluoroethane showed no decomposition at 22-25 °C within 26 h, but after 3 d the ¹⁹F NMR signal of BrF₃ disappeared and a significant amount of CCIF₂CCIF₂ was formed. Bromine trifluoride is insoluble in perfluorohexane. perfluoromethylcyclohexane, perfluoro-2methylpent-2-ene, and perfluorotributylamine. Fortunately, the commercially available fluorohydrocarbons, 1,1,1,3,3-pentafluoropropane (PFP) (HFC-245fa) (mp. -103 °C, bp. 15 °C) and 1,1,1,3,3pentafluorobutane (PFB) (Solkane[®] 365mfc) (mp. ~-36 °C, bp. 40 °C) displayed satisfactory properties as solvents for reactions of bromine trifluoride e.g. with perfluoroorganyldifluoroboranes. PFP and PFB solutions of bromine trifluoride can be stored over weeks at 5–25 °C without remarkable decomposition.

For BrF₃ solutions in PFB, we have found that bubbling of BF₃ at -15 °C caused the formation of a second high density phase, which completely dissolved above 0 °C. The ¹¹B and ¹⁹F NMR spectra showed no resonances of the starting fluorides BrF₃ and BF₃. Instead, a new ¹⁹F resonance appeared at -72 ppm in case of a molar ratio 1:1 and its integral intensity was equal to the sum of those of BrF₃ and BF₃. Parallel, a singlet at 0.16 ppm was observed

in the ¹¹B NMR spectrum. No changes in the ¹¹B and ¹⁹F NMR spectra occurred at 24 °C over a period of 24 h. Decantation of the solvent phase from the heavy density phase at -20 °C and redissolution of the latter in a fresh portion of PFB resulted only in a small shift of the NMR resonance. We assume that the above mentioned ¹⁹F and ¹¹B signal belong to an adduct, formally described as "BrF₃·BF₃" with a highly polarized bromine-fluorine bond. Noteworthy, that Cyr and Brownstein [16] presented the ¹⁹F NMR spectrum of BrF₃ and BF₃ (1:1) in SO₂ClF at -120 °C, which consisted of three resonances at -60.6, -70.5, and -127.7 ppm in the integral ratio 1:1:4. The ¹⁹F NMR spectrum of an equimolar solution of BrF3 and AsF5 in SO2ClF at -120 °C also contained three resonances at -61.0, -68.3 and -56.3 (As-F) ppm. With an excess of either BrF_3 or LA (LA = BF_3 , AsF_5) there was a rapid exchange between all fluorine atoms over the entire temperature range $(-120 \text{ to } 25 \,^{\circ}\text{C})$. This picture was interpreted to arise from a structure like F-Br(F) \cdots F-LA with two magnetically non-equivalent fluorine atoms bonded to the bromine atom. In case of individual [BrF₂][SbF₆] we were not able to measure its ¹⁹F NMR spectrum in SO₂ClF because of the too low solubility even at 24 °C. However, this salt is well soluble in aHF (>163 mg (0.46 mmol) per mL at 0 °C). The ¹⁹F NMR spectrum of [BrF₂][SbF₆] in aHF at -40 °C consisted of a singlet at -73.5 ppm ($\Delta v_{1/2} = 106$ Hz) ([BrF₂]⁺), very broad Sb-F resonances in the range of ca. -120 to -125 ppm and the signal of the solvent at -190 ppm. Acidification of the solution with SbF₅ (fivefold molar excess) did not really affect the chemical shift of the $[BrF_2]^+$ cation ($\delta(F) = -72.9$). Variation of the temperature caused reversible broadening of this resonance from $\Delta v_{1/2}$ = 47–53 Hz ($-40 \,^{\circ}$ C) to \sim 240 Hz ($-20 \,^{\circ}$ C) and >1000 Hz ($0 \,^{\circ}$ C). For comparison, the ¹⁹F NMR spectrum of BrF₃ presents a singlet at -16.3 ppm (neat liquid, 35 °C) [17], -16.5 ppm (SO₂ClF, -20 °C) [16], -17.3 ppm ($\Delta v_{1/2}$ = 56 Hz) (PFP, $-10 \,^{\circ}$ C), and -17.9 ppm $(\Delta v_{1/2} = 27 \text{ Hz})$ (PFB, 24 °C).

2.2. $[(R_F)_2Br]Y$ salts by reactions of BrF_3 with perfluoroorganylboranes in weakly coordinating solvents

The addition of tris(pentafluorophenyl)borane (**1**) to a stirred suspension of BrF_3 (molar ratio 2:3) in dichloromethane at -78 °C formed a new suspension. Gradual warming up to 35 °C and separation of the precipitate gave bis(pentafluorophenyl)bromonium pentafluorophenylfluoroborates (Eq. (7)).

$$2(C_{6}F_{5})_{3}B + 3BrF_{3} \xrightarrow{CH_{2}C_{2}}_{-78 \text{ to } 25 \circ C} [(C_{6}F_{5})_{2}Br][(C_{6}F_{5})_{n}BF_{4-n}](n = 0-3)$$
(7)

The $[(C_6F_5)_3BF]^-$ anion (minor component) together with the $[C_6F_5BF_3]^-$ and $[BF_4]^-$ anions (major components) indicate the participation of the boranes $(C_6F_5)_2BF$ and $C_6F_5BF_2$ as intermediates in the aryl transfer process. To obtain only one type of anion, the reaction was performed in the presence of the fluoride acceptor BF_3 ·NCCH₃ and using different sequences of mixing the reagents. In all cases, bis(pentafluorophenyl)bromonium tetrafluoroborate (**2**) was obtained in a good isolated yield (Eq. (8)).

$$2(C_{6}F_{5})_{3}B + 3BrF_{3} + BF_{3} \cdot \text{NCCH}_{3} \underbrace{\overset{CH_{2}Cl_{2}}{_{-78 \text{ to } 25 \,^{\circ}\text{C}, -MeCN}} 3[(C_{6}F_{5})_{2}Br][BF_{4}]}_{2(60-86\%)}$$
(8)

More information about the individual F/C_6F_5 -substitution steps in BrF₃ than with $(C_6F_5)_3B$ and $(C_6F_5)_2BF$ [11] were obtained with pentafluorophenyldifluoroborane (**3**). Independent of the molar ratio of reagents salt **2** was isolated (Eq. (9)).

$$2C_{6}F_{5}BF_{2} + BrF_{3} \xrightarrow{PFB}_{-20^{\circ}C} [(C_{6}F_{5})_{2}Br][BF_{4}] + BF_{3}$$
(9)

Pentafluorophenylbromine difluoride was not detected even in the equimolar reaction of borane **3** with BrF_3 . Salt **2** was formed in the same yield independent of the ratio of reagents and the stoichiometrical excess of BrF_3 which remained.

The successful pentafluorophenylation of bromine trifluoride with pentafluorophenylboron difluoride inspired us to apply this approach to the preparation of previously unknown bis(organyl)bromonium salts containing perfluorinated alkynyl, alkenyl, and alkyl groups. We used our convenient synthetic procedure to produce solutions of the required boranes R_FBF_2 by fluoride abstraction from the corresponding borates $K[R_FBF_3]$ with BF_3 in appropriate weakly coordinating solvents [18,19].

Thus trifluoropropynyldifluoroborane (**4**) was easily reacted with BrF_3 in PFP and the desired bis(trifluoropropynyl)bromonium tetrafluoroborate salt (**5**) was isolated in moderate yield (Eq. (10)).

$$2 CF_3 C \equiv CBF_2 + BrF_3 \xrightarrow{PFP}_{-40\,^{\circ}C} [(CF_3 C \equiv C)_2 Br] [BF_4] + BF_3$$
(10)

For introducing perfluoroalkenyl groups we took two perfluoroalkenyldifluoroboranes of different configuration, *trans*-pentafluoroprop-1-en-1-yldifluoroborane (**6**) and *cis*-heptafluorobut-1-en-1-yldifluoroborane (**7**). In case of the fluoro/perfluoroalkenyl substitution in XeF₂ we had observed an influence of the configuration on the reaction rate [20].

Borane **6** reacted with BrF_3 giving a solution of salts with bis(trans-pentafluoroprop-1-en-1-yl)bromonium ((**8a**), major), (*trans-*pentafluoroprop-1-en-1-yl)(*cis*-pentafluoroprop-1-en-1-yl)(bromonium ((**8b**), minor)) cations and the counteranions*cis*- and*trans*-pentafluoroprop-1-en-1-yltrifluoroborate and perfluoropropyltrifluoroborate (Eq. (11)).

$$\begin{aligned} & 2 \textit{trans-CF}_3 CF = CFBF_2 + BrF_3 \underbrace{\overset{PFP}{\underset{-40 \text{ to} -30 \, ^\circ C}{\underset{-30 \, ^\circ C}{\overset{PFP}{\underset{(8a,b)Y}{}}}}}_{(8a,b)Y} & (11) \\ & R = R' = \textit{trans-CF}_3(8a); R = \textit{cis-CF}_3; R' = \textit{trans-CF}_3(8b) \\ & Y = [\textit{cis-and trans-CF}_3 CF = CFBF_3]^- + [C_3F_7BF_3]^- \end{aligned}$$

A related reaction path occurred in the reaction of *cis*-heptafluorobut-1-en-1-yldifluoroborane (**7**) (2 equiv.) and BrF_3 where a solution of salts with bis(heptafluorobut-1-en-1-yl)bromonium cations (**9a**–**c**) and the counteranions heptafluorobut-1en-1-yltrifluoroborate and perfluorobutyltrifluoroborate was formed (Eq. (12)).

$$2cis-C_{2}F_{5}CF=CFBF_{2} + BrF_{3} \xrightarrow{PFB}_{-20 \circ C} [(RCF=CF)(R'CF=CF)Br]Y$$

$$R = R' = cis-C_{2}F_{5}(\textbf{9a}); R = cis-C_{2}F_{5}; R' = trans-C_{2}F_{5}(\textbf{9b}); \quad (12)$$

$$R = R' = trans-C_{2}F_{5}(\textbf{9c})$$

$$Y = [cis- and trans-C_{2}F_{5}CF=CFBF_{3}]^{-} + [C_{4}F_{9}BF_{3}]^{-}$$

The opposite sequence of mixing, the addition of BrF₃ to a cold solution of 7 (2 equiv.) in PFB, led to a solution of related composition, but with incomplete conversion of 7. Further addition of BrF₃ (total 1.8 equiv.) to the solution resulted in a suspension. After removal of the volatiles under reduced pressure, bis(heptafluorobut-1-en-1-yl)bromonium salts with tetrafluoroborate and perfluorobutyltrifluoroborate counteranions were isolated. The reaction was accompanied by cis to trans-isomerization of the heptafluorobutenyl group in the alkenylbromonium moiety and partially in the alkenyltrifluoroborate moiety. It seems that the $[C_2F_5CF=CFBF_3]^-$ anion in the bromonium salts did not react preferentially with BrF3 and furthermore on another route than the "naked" anion. Because the treatment of tetrabutylammonium *cis*-heptafluorobut-1-en-1-yltrifluoroborate (TBA-10) with BrF₃ in PFB yielded tetrabutylammonium 2-bromoperfluorobutyltrifluoroborate (TBA-11), tetrafluoroborate, and perfluorobut-1-ene (**12**) (Eq. (13)). Borate **11** and alkene **12** were not found in the reaction mixtures (Eq. (12)).

$$[Bu_4N][cis-C_2F_5CF = CFBF_3] + BrF_3 \xrightarrow{PFB,-20 \circ C} [Bu_4N][C_2F_5CFBrCF_2BF_3]$$

+ $C_2F_5CF = CF_2 + [Bu_4N][BF_4]$ (13)

Noteworthy, that solutions of $[(C_6F_5)_2Br]Y$ and [(RCF=CF)(R'CF=CF)Br]Y in MeCN showed no decomposition at 25 °C over days whereas the salt $[(CF_3C=C)_2Br][BF_4]$ decomposed in acetonitrile at -25 °C.

In contrast to perfluorinated aryl-, alkenyl-, and alkynyldifluoroboranes, perfluorohexyldifluoroborane (**13**) (1 equiv.) did not react with BrF₃ (1 equiv.) under formation of the corresponding bis(perfluorohexyl)bromonium salt. The only fluoroorganic products were 1-bromoperfluorohexane (**14**) and perfluorohexane (**15**) (1:1) which were slowly produced at -60 °C. At -10 °C the reaction was completed within 1 h (Eq. (14)). Remarkably, that only 0.5 equiv. of BrF₃ was consumed.

$$2 C_{6}F_{13}BF_{2} + BrF_{3} \xrightarrow{PFP}_{-60^{\circ}C} C_{6}F_{13}Br + C_{6}F_{14} + 2BF_{3}$$
(14)

A priori, the conversion of **14** to **15** by BrF₃ cannot be excluded. Therefore we performed additional experiments using the closely related 1-bromoperfluorooctane. It did not react with BrF₃ in PFB at 24 °C over a period of 17 h, but in the presence of a Lewis acid replacement of bromine by fluorine occurred (Eqs. (15) and (16)). Bubbling of BF₃ (weak Lewis acid) into a solution of $C_8F_{17}Br$ and BrF₃ in PFB at 0 °C gave "BrF₃·BF₃" (¹⁹F NMR), which converted $C_8F_{17}Br$ slowly into C_8F_{18} at 24 °C (1 h, no reaction; 72 h, complete conversion). Experiment (Eq. (15)) allows to exclude the formation of Alk_F-F from Alk_F-Br and BrF₃.

$$C_8F_{17}Br + BrF_3 \xrightarrow{PFB}_{24^{\circ}C,17h} \text{no reaction}$$
(15)

$$C_8F_{17}Br + "BrF_3 \cdot BF_3" \underset{24^{\circ}C,72}{\xrightarrow{PFB}} C_8F_{18} + \cdots$$
(16)

It is noteworthy, that the treatment of $C_8F_{17}Br$ with $[BrF_2][SbF_6]$ in aHF at 24 °C gave C_8F_{18} in a quantitative yield within 3 h.

2.3. Reaction of the pentafluorophenyldifluoroborane-MeCN adduct with BrF_3 in PFB/MeCN

In a preceding paper [11] we reported the synthesis of salt **2** from BrF₃ and $(C_6F_5)_2BF$ in either CH_2Cl_2 as a weakly coordinating solvent or in CH_2Cl_2 with molar admixtures of coordinating CH_3CN in high yields. Actually we investigated the reaction (1:1) of BrF₃ with the adduct $C_6F_5BF_2$ ·NCCH₃ (**16**) in a PFB/MeCN-mixture and obtained salt **2** too, but accompanied by significant amounts of bromopentafluorobenzene (**17**) (Eq. (17)).

$$C_{6}F_{5}BF_{2} \cdot \text{NCCH}_{3} + BrF_{3} \xrightarrow{\text{PFB/MeCN}}_{-20 \text{ to } 24^{\circ}C} [(C_{6}F_{5})_{2}Br][BF_{4}] + C_{6}F_{5}Br$$
(17)

2.4. Reactions of BrF_3 with 2 equiv of $C_6F_5SiX_3$ (X = F, Me)

BrF₃ reacted with 2 equiv. of C₆F₅SiF₃ (18) in CH₂Cl₂ in the presence of 2 equiv. of MeCN up to -60 °C only under formation of C₆F₅BrF₂ (**19**). In a slow reaction at ≥ -30 °C the formation of the bromonium salt [(C₆F₅)₂Br][SiF₅] occurred (Eqs. (18) and (19)). The salt was isolated in 92% yield.

$$2C_{6}F_{5}SiF_{3} + BrF_{3} \xrightarrow{CH_{2}CI_{2}^{*}}_{\leq -60^{\circ}C}C_{6}F_{5}BrF_{2} + C_{6}F_{5}SiF_{3} + SiF_{4}$$
(18)

$$2 C_{6} F_{5} SiF_{3} + BrF_{3} \xrightarrow[]{CH_{2}Cl_{2}^{*}}{\xrightarrow[]{30 \circ C}} [(C_{6} F_{5})_{2} Br][SiF_{5}] + SiF_{4}$$
(19)

*2 equiv. of MeCN were present to increase the solubility of BrF₃ at low temperature

When the reaction of BrF₃ was performed with $C_6F_5SiMe_3$ (21) in a similar manner up to 0 °C only $C_6F_5BrF_2$ (19) (58% yield after isolation) was formed (Eq. (20)). In a further experiment BrF₃ was reacted with a mixture of 2 equiv. of $C_6F_5SiMe_3$ (21) and BF₃·OEt₂. After 1 h at -78 °C the starting materials BrF₃ and BF₃·OEt₂ were consumed, but whether $C_6F_5BrF_2$ (19) nor [(C_6F_5)₂Br][BF₄] (2) were present. Besides [BF₄]⁻ (major product), C_6F_5Br and Me₃SiF were formed (Eq. (21)).

$$2 C_{6}F_{5}SiMe_{3} + BrF_{3} \xrightarrow{CH_{2}Cl_{2}}_{\leq 0 \circ C} C_{6}F_{5}BrF_{2} + C_{6}F_{5}SiMe_{3} + Me_{3}SiF$$
(20)

$$BrF_{3} + 2C_{6}F_{5}SiMe_{3}/2BF_{3} \cdot OEt_{2} \frac{CH_{2}Cl_{2}}{\leq -78^{\circ}C} [BF_{4}]^{-} + C_{6}F_{5}SiMe_{3} + C_{6}F_{5}Br + Me_{3}SiF$$
(21)

2.5. Reactions of potassium perfluoroorganyl trifluoroborates with BrF_3 in aHF

It is known, that dissolution of BrF_3 in aHF leads to a fluoride ion transfer equilibrium [21,22] accompanied by an increase of the electrophilicity and fluorooxidizer power of Br(III) (Eq. (22)).

$$BrF_3 + nHF \stackrel{\text{and}}{=} [BrF_2][F(HF)_n]$$
(22)

ALLE

The dissolution of organyltrifluoroborates in aHF results primarily in the protonation of the fluorine atoms bonded to boron and leads to a organylfluoroborate/-borane equilibrium and a decrease in the acidity of hydrogen fluoride [23]. Thus, the transformation of the organyltrifluoroborate into the corresponding organyldifluoroborane was expected to favor the F/R_F substitution in BrF₃ relative to the oxidative addition of fluorine across C–C double or triple bonds in the R_F-group.

However, the addition of bromine trifluoride in aHF to a cold solution of an equimolar amount of potassium pentafluorophenyl-trifluoroborate (**K-22**) in aHF gave salt **2** in only 45% yield while the main components derived from BrF-splitting of the B–C bond and fluorine addition across C=C double bonds: bromopentafluorobenzene **17**, 1-bromoheptafluorocyclohexa-1,4-diene (**23**), and 1-bromononafluorocyclohexene (**24**) (Eq. (23)).

$$\begin{array}{c} K[C_{6}F_{5}BF_{3}] + BrF_{3} \xrightarrow{aHF, \geq -40\,^{\circ}C} [(C_{6}F_{5})_{2}Br][BF_{4}] + C_{6}F_{5}Br \\ \hline k - 22 & 17 \\ + cyclo - 1 - Br - 1, 4 - C_{6}F_{7} + cyclo - 1 - BrC_{6}F_{9} \\ \hline 23 \end{array}$$

$$\begin{array}{c} (23) \\ \end{array}$$

No perfluoroalkenylbromonium salt was obtained when potassium *cis*-heptafluorobut-1-en-1-yltrifluoroborate (**K-10**) was reacted with bromine trifluoride in aHF. Instead, potassium 2-bromoperfluorobutyltrifluoroborate (**K-11**) and 2-bromoperfluorobutane (**25**) were formed (Eq. (24)) (compare with a related reaction in PFB, (Eq. (13))).

$$K [cis-C_2F_5CF = CFBF_3] + BrF_3 \xrightarrow{\text{aHF}_{-30} \circ C} K[C_2F_5CFBrCF_2BF_3] + C_2F_5CFBrCF_3 + K[BF_4]$$

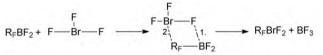
$$(24)$$

2.6. Reactions of potassium perfluoroorganyltrifluoroborate with $[BrF_2][SbF_6]$ in aHF

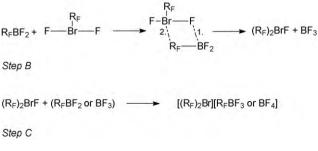
When $[BrF_2][SbF_6]$ was added to a solution of $K[C_6F_5BF_3]$ (K-22) (2 equiv.) in aHF bromonium hexafluoroantimonate resulted

besides unreacted borate **22**. After hydrodeboration of remaining $[C_6F_5BF_3]^-$ with aHF to C_6F_5H and $[BF_4]^-$ at 25 °C, the salt $[(C_6F_5)_2Br][SbF_6]$ was obtained in 31% yield (Eq. (25)).

Potassium perfluorohexyltrifluoroborate (**K-26**) did not react with $[BrF_2][SbF_6]$ in aHF at 25 °C (Eq. (26)).


$$2K [C_6F_{13}BF_3] + [BrF_2][SbF_6] \xrightarrow{aHF,25 \circ C} no \ reaction$$
(26)
$$\xrightarrow{\kappa-26}$$

3. Discussion


The formation of organylbromonium(III) salts from BrF₃ and the organyl transfer reagent R_FEX_{n-1} in weakly coordinating solvents like CH_2Cl_2 or PFP includes three steps: (a) $BrF_3 + R_FEX_{n-1} \rightarrow R_FBrF_2 + FEX_{n-1}$, (b) $R_FBrF_2 + R_FEX_{n-1} \rightarrow (R_F)_2BrF + FEX_{n-1}$, and (c) $(R_F)_2BrF + (FEX_{n-1} \text{ or } R_FEX_{n-1}) \rightarrow [(R_F)_2Br][F_2EX_{n-1} \text{ or } R_FEX_{n-1}F]$. In step (c) the formation of tris(organyl)bromane is not favored. $(R_F)_2BrF$ is a good fluoride donor comparable with $(R_F)_2IF$ [24]. Furthermore, the bromonium entity is stabilized by two 2c-2e C-Br bonds and the bromonium salt by lattice energy. Therefore bromonium salts are the final products under satisfactory acidic conditions.

When the organyl transfer reagents are perfluoroorganyldifluoroboranes R_FBF_2 , these steps are substantiated in Scheme 1.

The success in the carbon-bromine(III) bond formation is mainly determined by two factors of the organyl transfer reagent: (a) Lewis acidity towards fluoride and (b) nucleophilicity of the C¹ carbon atom in the transition state. In step A, the interaction (1) of the acid R_FBF₂ with one fluorine atom of the BrF₂ triad weakens one Br-F bond and makes the bromine centre more electrophilic. Parallel the nucleofugality of the R_F group increases. As a result of the electrophile–nucleophile interaction (2) R_FBrF_2 is formed. The latter was not detected by ¹⁹F NMR spectroscopy even at low temperature and local excess of BrF₃ (addition of neat BrF₃ to a diluted solution of R_FBF₂) or stoichiometric excess of BrF₃ $(BrF_3; R_FBF_2 = 1:1)$. Furthermore, reaction mixtures obtained from BrF₃ and C₆F₅BF₂ in weakly coordinating solvents did not contain products of the acid-assisted decomposition of C₆F₅BrF₂ (C₆F₅Br, bromoperfluorocycloalkenes C₆BrF₇ and C₆BrF₉) which occurred at -80 to $-30 \degree C$ [25]. Hence, the rate of reaction of $R_F BrF_2$ with $R_F BF_2$ (step B) exceeds both: the rate of formation of R_FBrF_2 (step A) and the rate of the acid-assisted decomposition of the latter. Some hint on the intermediate $C_6F_5BrF_2$ may be the increased formation of

Scheme 1.

 C_6F_5Br (**17**) from the 1:1 reaction of $C_6F_5BF_2$ ·NCCH₃ and BrF_3 in PFB/MeCN (Eq. (17)). Previously we have found that **17** is the major product of the BF_3 ·NCCH₃ assisted decomposition of $C_6F_5BrF_2$ in CH₂Cl₂/MeCN [25].

Taking into account the order of the gas phase fluoride affinity in kcal/mol of fluoroboranes BF₃ (78.8) < $C_6F_5BF_2$ (85.1) < $CF_3C\equiv CBF_2$ (89.0) $\leq CF_3CF = CFBF_2$ (89.0–90.0) < $C_3F_7BF_2$ (96.7) [26], step c should result in $[(R_F)_2Br][R_FBF_3]$ rather than in $[(R_F)_2Br][BF_4]$. The $[R_FBF_3]^-$ type of anion was only observed for R_F = perfluoroalkenyl (Eqs. (11) and (12)). Fluoroborates with more nucleophilic R_F groups ($R_F = C_6F_5, CF_3C\equiv C$) give tetrafluoroborates, $[(R_F)_2Br][BF_4]$. A closely related pictures was observed for the syntheses of bis(perfluoroorganyl)iodonium [12] and perfluoroarganylxenonium [14,15] salts via boranes R_FBF_2 . In the context, which anion is formed, the unique transfer of a perfluoroalkyl group should be mentioned when borane $C_6F_{13}BF_2$ was reacted with $C_6F_5IF_2$ in PFP at -40 °C under formation of $[C_6F_5(C_6F_{13})I][C_6F_{13}BF_3]$ [27].

The attempted preparation of the bis(perfluorohexyl)bromonium salt from $C_6F_{13}BF_2$ and BrF_3 (~2:1) gave $C_6F_{13}Br$ and C_6F_{14} in a 1:1 ratio besides BF₃. This result can be explained via the formation of the intermediate $[(C_6F_{13})_2Br][C_6F_{13}BF_3]$ and its fast decomposition. This assumption is in agreement with the decomposition of $[(C_6F_5)(C_6F_{13})I][C_6F_{13}BF_3]$ in PFB which resulted in C_6F_5I , C_6F_{14} , and $C_6F_{13}BF_2$ [27].

In case of F/C_6F_5 substitution in BrF_3 we have investigated the influence of the nature of the transfer reagent. Concretely, we included $C_6F_5SiF_3$ and $C_6F_5SiMe_3$ in our investigations and compare the result with that of $C_6F_5BF_2$.

From calculated gas phase affinities we know that the tendency to attach a fluoride ion decreases from C₆F₅BF₂ via C₆F₅SiF₃ to C₆F₅SiMe₃ [26]. With both reagents of lower fluoride affinity the first F/C₆F₅ substitution step in BrF₃ is principally successful. The further F/C_6F_5 substitution step in $C_6F_5BrF_2$ was only possible in case of $C_6F_5SiF_3$ but this step proceeded slowly and afforded a temperature of >-30 °C. With C₆F₅SiMe₃ no bromonium product was formed even at 0 °C. When the reaction of BrF_3 with 2 equiv. $C_6F_5SiMe_3$ was performed in the presence of BF₃·OEt₂ in CH₂Cl₂ BrF₃ interacted preferentially with the Lewis acid BF₃·OEt₂ and attacked the solvent and $C_6F_5SiMe_3$. [BF₄]⁻, C_6F_5Br , and Me_3SiF were formed in decreasing quantities. The comparison of the three C₆F₅-transfer reagents in our present study allows to draw important conclusions. In order to substitute only one fluorine atom in the hypervalent moiety of BrF₃ the equimolar reaction with C₆F₅BF₂ is not suitable, because the second F/C₆F₅-substitution step proceeds faster than the first. The opposite sequence of the reaction rates is found for $C_6F_5SiF_3$. For the second F/ C_6F_5 -substitution step to the bromonium cation a minimum acidity (fluoride affinity) is needed, which is not provided by C₆F₅SiMe₃. When we compare the corresponding reactivity of hypervalent F-E-F triads in C₆F₅IF₂ and XeF₂ with that in $C_6F_5BrF_2$ we find the same tendency. Thus the unique importance of R_FBF_2 compounds for the introduction of R_F -groups into the Xe(II) moiety under formation of xenonium salts becomes plausible by our actual results.

The results of reactions between K[R_FBF₃] with both, BrF₃ and [BrF₂][SbF₆], in aHF are closely related to those obtained in reactions with XeF₂ in aHF [23,28]. Salt K[C₆F₅BF₃] reacted with both binary fluorides EF_n giving pentafluorophenyl-containing salts, **2** (EF_n=BrF₃) or [C₆F₅Xe][BF₄] (EF_n = XeF₂) besides products of fluorine addition across the C=C bond. Salt K[*cis*-C₂F₅CF=CFBF₃] underwent bromofluorination and further conversion to **25** in reactions with BrF₃, while with XeF₂ fluorine addition across the C=C bond led to K[C₄F₉BF₃]. Salt K[C₆F₁₃BF₃] was inert towards both, [BrF₂][SbF₆] and XeF₂, in aHF. This picture shows an increased oxidative potential of [EF_{n-1}]⁺ (or a related polarized form of EF_n) which can become predominant over an increased electrophilicity (e.g. rate of carbon-E bond formation). Hence, the use of [EF_{n-1}]Y

salts for the preparation of organic derivatives of polyvalent halogens or xenon is no perspective route. For the same reason, the presence of very strong polarizing substances (solvents, acidic admixtures, etc.) should be avoided.

4. Experimental

The NMR spectra were recorded on a Bruker AVANCE 300 spectrometer (300.13 MHz, ¹H; 282.40 MHz, ¹⁹F; 96.29 MHz, ¹¹B; 75.47 MHz, ¹³C). The chemical shifts are referenced to TMS (¹H, ¹³C), CCl₃F (¹⁹F, with C₆F₆ as secondary reference (-162.9 ppm)), and BF₃·OEt₂/CDCl₃ (15%, v/v) (¹¹B), respectively. The composition of the reaction mixtures was determined by ¹⁹F NMR spectroscopy using the internal integral standards C₆F₆, C₆F₁₄, or PFB. The products [(C₆F₅₎₂Br][BF₄] [11], C₄F₉Br [29], [C₄F₉BF₃]⁻ [23], *cis*-C₂F₅CF=CFBr [30], *trans*-C₂F₅CF=CFBr [30], *cyclo*-1-Br-1,4-C₆F₇, *cyclo*-1-H-1,4-C₆F₇, and *cyclo*-1-BrC₆F₉ [31] were identified by ¹⁹F NMR spectroscopy. As a convention for the presentation of the NMR spectral data, the fluorine atoms F² at C² in [RC²F²=C¹F¹-X] compounds (X = B, Br) are specified by *cis* or *trans* relative to the position of X, e.g. as F^{2trans}.

1,1,1,3,3-Pentafluoropropane (PFP) (Honeywell), 1,1,1,3,3-pentafluorobutane (PFB) (Solvay), trichlorofluoromethane (K11, Solvay), 1,1,2-trichlorotrifluoroethane (K113, Solvay), and ether (Baker) were stored over molecular sieves 3 Å before use. Sicapent (Merck), boron trifluoride (Air Liquide), KF, spray-dried (Morita), [Bu₄N][BF₄] (Fluka), C₆F₁₃I (Hoechst), C₈F₁₇Br (Hoechst), 40% and 71-75% aqueous HF (Fluka), K[HF₂] (Riedel-de Haën), were used as supplied. B(OMe)₃ (Fluka) was distilled over sodium. Antimony pentafluoride was twice distilled under an atmosphere of dry argon. Acetonitrile (Baker) and dichloromethane (Baker) were purified and dried as described in ref. [32]. Anhydrous HF (aHF) was stored over CoF₃. Tris(pentafluorophenyl)borane [18], C₆F₅SiF₃ [33], C₆F₅SiMe₃ [34], Li[C₆F₁₃B(OMe)₃] [35], K[C₆F₅BF₃] [36], K[cis-C₂F₅CF=CFBF₃] [37], BF₃·NCCH₃ [38], and solutions of *cis*- $C_2F_5CF=CFBF_2$, trans-CF₃CF=CFBF₂ [39], CF₃C=CBF₂ [40] in PFB or PFP were prepared as described. Salt $K[C_6F_{13}BF_3]$ [41] and solutions of C₆F₅BF₂ [42] and C₆F₁₃BF₂ [41] in PFB or PFP were prepared by modified procedures (see below). Bromine trifluoride was prepared by bubbling of fluorine (25%, v/v in N_2) into dry bromine at 8–20 °C and AsF₅ from AsF₃ with undiluted F₂ at \leq 20 °C.

All manipulations with BrF_3 and perfluoroorganyldifluoroboranes were performed in FEP (block copolymer of tetrafluoroethylene and hexafluoropropylene) or PFA (block copolymer of tetrafluoroethylene and perfluoroalkoxytrifluoroethylene) equipment under an atmosphere of dry argon.

4.1. Preparation of $K[C_6F_{13}BF_3]$ (K-26)

(A) The reaction was performed in a three-necked, 1-L flask equipped with a low-temperature thermometer, a gas inlet, a Teflon-coated magnetic stir bar, and a dropping funnel which was connected via a Sicapent-filled tube to a mineral oil gas bubbler. The flask was charged with $C_6F_{13}I$ (25 g, 56 mmol) and ether (400 mL) and cooled to -70 °C under an atmosphere of dry argon. Ethylmagnesium bromide (0.90 M in ether, 62 mL, 56 mmol) was added drop-wise within 30 min. The solution transformed to a white suspension which was stirred at -55 °C for 1.5 h. Subsequently $B(OMe)_3$ (9.0 g, 86 mmol) in ether (10 mL) was added drop-wise using a syringe. The suspension was stirred at -50 °C for 1 h and allowed to warm to -10 °C within 2.5 h. A transparent solution was formed which was transferred to a round bottom flask (1 L). After concentration on an evaporator at 25 °C a suspension resulted, which was diluted with MeOH (50 mL) and poured into a solution of K[HF₂] (23 g, 294 mmol) in water (30 mL) and 40% aqueous HF (30 mL) placed in a polypropylene beaker

(400 mL). The slurry was stirred at 20 °C overnight, diluted with water (50 mL), and neutralized by portion-wise addition of K₂CO₃. The suspension was extracted with MeCN (3×50 mL). According to ¹⁹F NMR data, the extract contained K[C₆F₁₃BF(OMe)₂] (characteristic resonances at -130.8 (CF₂B) and -156.5 (q (1:1:1:1), ¹J(F, B) = 46 Hz, $BF(OMe)_2^-$) ppm), and $K[C_6F_{13}BF_2OMe]$ (characteristic resonances at -131.7 (CF₂B) and -149.1 (q (1:1:1:1), ¹J(F, B) = 50 Hz, BF_2OMe^-) ppm) borate anions in the molar ratio 1:4. The solution was concentrated on an evaporator to 60–70 mL volume, poured into a polypropylene beaker (400 mL) and 71-75% aqueous HF (30 mL) was added in one portion (moderately exothermic reaction). The suspension was stirred for 3.5 h, cooled by addition of crashed ice (60-70 g) and carefully neutralized with concentrated aqueous KOH under cooling (ice bath). The suspension was extracted with MeCN (3×50 mL) and the combined extracts were dried with KF. The solvent was removed under reduced pressure and the solid was finally dried in a vacuumdesiccator over Sicapent. The salt K[C₆F₁₃BF₃] was obtained in 73% yield (17.5 g, 41 mmol).

(B) The salt Li[C₆F₁₃B(OMe)₃] (2.2 g, 5.1 mmol) was added in portions to a solution of K[HF₂] (1.8 g, 23 mmol) in 71–75% aqueous HF (10 mL). The suspension was stirred for 5 h, diluted with water (3 mL), neutralized with K₂CO₃ and extracted with MeCN (3× 10 mL). The extract was dried with KF and the solvent was removed under reduced pressure. The product was dried in a vacuum-desiccator over Sicapent. The salt K[C₆F₁₃BF₃] was obtained in 74% yield (1.6 g, 3.8 mmol).

Solubility of $K[C_6F_{13}BF_3]$ in MeCN exceeds 533 mg per mL (1.25 mmol per mL).

 $K[C_6F_{13}BF_3]$ (**K-26**). ¹⁹F NMR (aHF, 0 °C): δ -79.5 (tt, ⁴/(F⁶), F^4) = 10 Hz, ${}^3/(F^6, F^5)$ = 2 Hz, 3F, F^6), -119.8 (m, CF_2), -120.5 (m, CF_2), -121.3 (m, CF₂), -124.1 (m, 2F, F⁵), -132.1 (m, 2F, F¹), -149.0 (q (1:1:1:1), ¹J(F, B) = 41 Hz, 3F, BF₃⁻). ¹¹B NMR (aHF, 0 °C): δ -0.3 (m, BF_3^{-}). ¹⁹F NMR (D₂O, 24 °C): δ -81.0 (t, ⁴/(F⁶, F⁴) = 9 Hz, 3F, F⁶), -122.7 (m, CF₂), -123.2 (m, CF₂), -124.6 (m, CF₂), -126.3 (m, 2F, F⁵), $-134.1 (m, 2F, F^{1}), -151.9 (q (1:1:1:1), {}^{1}J(F, B) = 41 \text{ Hz}, 3F, BF_{3}^{-}). {}^{11}B$ NMR (D₂O, 24 °C): δ –0.7 (m, BF₃⁻). ¹⁹F NMR (acetone-d₆, 24 °C): δ -80.0 (tt, ${}^{4}J(F^{6}, F^{4}) = 10$ Hz, ${}^{3}J(F^{6}, F^{5}) = 3$ Hz, 3F, F^{6}), -120.9 (m, CF_{2}), -121.6 (m, CF₂), -122.3 (m, CF₂), -125.0 (m, 2F, F⁵), -132.3 (m, 2F, F^{1} , -151.6 (q(1:1:1:1), ${}^{1}J(F, B) = 41$ Hz, 3F, BF_{3}^{-}). ${}^{11}B$ NMR (acetone d_6 , 24 °C): δ –0.6 (qt, ¹*J*(B, F) = 41 Hz, ²*J*(B, F) = 20 Hz, *B*F₃⁻). ¹³C{¹⁹F} NMR (acetone-d₆, 24 °C): δ 117.5 (C⁶), 121.3 (q (1:1:1:1), ¹J(C¹, B) = 87 Hz, C¹), 113.5, 112.0, 110.9 (3CF₂), 109.1 (q, ${}^{2}J(C^{5}, F^{6}) = 29$ Hz, C⁵). (lit. [41]: ¹⁹F NMR (CD₃CN, 24 °C)): (-80.1 (CF₃), -121.3, -121.9, -122.7, -125.1 (4CF₂), -132.6 (CF₂B), -151.8 (BF₃); ¹¹B NMR (CD₃CN, 24 °C): (-0.5 (qt, ${}^{1}J(B, F) = 41$ Hz, ${}^{2}J(B, F^{1}) = 18$ Hz).

4.2. Preparation of $[Bu_4N][cis-C_2F_5CF=CFBF_3]$ (TBA-10)

A solution of $K[cis-C_2F_5CF=CFBF_3]$ (428 mg, 1.48 mmol) in MeCN (0.5 mL) was poured into a stirred solution of $[Bu_4N][BF_4]$ (493 mg, 1.50 mmol) in MeCN (0.7 mL). After 15 min the suspension was centrifuged, the colorless mother liquor was decanted and evaporated to dryness at 20 °C (0.66 hPa) to yield the white solid $[Bu_4N][cis-C_2F_5CF=CFBF_3]$ (579 mg, 1.17 mmol).

[Bu₄N][*cis*-C₂F₅CF=CFBF₃] (**TBA-10**). ¹⁹F NMR (PFB, 24 °C): δ -83.2 (d, ⁴*J*(F⁴, F²) = 8 Hz, 3F, F⁴), -116.9 (dq, ³*J*(F³, F²) = 13 Hz, ⁵*J*(F³, BF₃⁻) = 13 Hz, 2F, F³), -130.4 (q (1:1:1:1), ²*J*(F¹, B) = 24 Hz, 1F, F¹), -157.2 (m, 1F, F²), -140.1 (q (1:1:1:1), ¹*J*(F, B) = 36 Hz, 3F, BF₃⁻). ¹¹B NMR (PFB, 24 °C): δ -0.6 (ddq, ³*J*(B, F²) = 7 Hz, ²*J*(B, F¹) = 23 Hz, ¹*J*(B, F) = 37 Hz, BF₃⁻).

4.3. Preparation of $C_6F_5BF_2$ in PFB or PFP

(A) A flame dried glass trap (10 mL) equipped with a Tefloncoated magnetic stir bar and topped with a T-piece was charged with K[C₆F₅BF₃] (454 mg, 1.65 mmol), PFB (3 mL) and cooled to -15 to -20 °C under an atmosphere of dry argon. Boron trifluoride (5–7 mmol) was bubbled into the stirred suspension for 25 min. Excess of BF₃ was removed by flushing with dry argon (0 °C, 10 min and 20 °C, 5 min). The suspension was centrifuged at 20 °C, the colorless mother liquor was decanted, the precipitate was washed with PFB (1 mL) and the washing was combined with the mother liquor. Yield of C₆F₅BF₂ (1.62 mmol, 98%), determined from the ¹⁹F NMR spectrum using C₆F₁₄ as quantitative integral reference.

(B) A solution of $C_6F_5BF_2$ (0.94 mmol, 95% yield) in PFP was prepared from $K[C_6F_5BF_3]$ (294 mg, 1.03 mmol) in PFP (3 mL) similarly, but the treatment after the reaction with BF₃ was performed at 0 °C (ice bath).

C₆F₅BF₂ (**3**). ¹⁹F NMR (PFB, 24 °C): δ –73.7 (s, $\Delta \nu_{1/2}$ = 116 Hz, 2F, BF₂), -128.2 (m, 2F, F^{2,6}), -144.0 (tt, ³*J*(F⁴, F^{3,5}) = 19 Hz, ⁴*J*(F⁴, F^{2,6}) = 8 Hz, 1F, F⁴), -161.2 (m, 2F, F^{3,5}). ¹¹B NMR (PFB, 24 °C): δ 22.1 (s, $\Delta \nu_{1/2}$ = 96 Hz).

4.4. Preparation of $C_6F_{13}BF_2$ (13) in PFP

(A) A flame dried glass trap (10 mL) equipped with a Tefloncoated magnetic stir bar and topped with a T-piece was charged with K[C₆F₁₃BF₃] (440 mg, 1.03 mmol), PFP (3 mL) and cooled to -65 °C under an atmosphere of dry argon. Arsenic pentafluoride (1.4 mmol) was condensed. The white slurry was stirred for 1 h while the temperature rose to 0 °C. The suspension was centrifuged at 0 °C (ice bath), the colorless mother liquor was decanted, the precipitate was washed with PFP (2.5 mL), and the washing was combined with the mother liquor. Yield of C₆F₁₃BF₂ (0.90 mmol, 90%, determined from the ¹⁹F NMR spectrum using PFB as a quantitative integral reference).

(B) A 11.7-mm i.d. PFA trap was charged with $K[C_6F_{13}BF_3]$ (440 mg,1.00 mmol), PFP (2 mL) and cooled to -25 °C under an atmosphere of dry argon. A cold (-20 °C) solution of SbF₅(0.9 mmol) in PFP (3 mL) was added and the white slurry was stirred for 1 h at -20 °C. The suspension was centrifuged at 0 °C (ice bath), the colorless mother liquor was decanted, the precipitate was washed with PFP (1.5 mL), and the washing was combined with the mother liquor. Yield of $C_6F_{13}BF_2$ (0.80 mmol, 80%, determined from the ¹⁹F NMR spectrum using PFB as a quantitative integral reference).

C₆F₁₃BF₂ (**13**). ¹⁹F NMR (PFP, 0 °C): δ –75.8 (s, $\Delta v_{1/2}$ = 150 Hz, 2F, BF₂), -79.9 (t, ⁴*J*(F⁶, F⁴) = 10 Hz, 3F, F⁶), -119.6 (m, CF₂), -121.3 (m, CF₂), -124.1 (m, CF₂), -124.9 (m, 2F, F⁵), -132.8 (m, 2F, F¹). ¹¹B NMR (PFP, 24 °C): δ 18.4 (s, $\Delta v_{1/2}$ = 141 Hz). (lit. [41] ¹⁹F NMR (CCl₃F): δ -78.3 (s, 2F, BF₂), -81.5 (3F, F⁶), -121.7, -123.2, -125.9, -126.7 (4CF₂), -134.1 (m, 2F, F¹); ¹¹B NMR (CCl₃F, 24 °C): δ 19.2 (br. s)).

4.5. Preparation of $C_6F_5BF_2$ ·NCCH₃ (16)

A solution of MeCN (14 mg, 0.34 mmol) in PFB (0.1 mL) was added to a solution of $C_6F_5BF_2$ (0.29 mmol) in PFB (0.4 mL). The suspension was centrifuged and the white precipitate was dried in high vacuum (yield 70 mg, 0.27 mmol). Mp. 108 °C.

G₆F₅BF₂·NCCH₃ (16). ¹⁹F NMR (CH₃CN, 24 °C): δ −135.4 (m, 2F, F^{2,6}), −156.0 (t, ³*J*(F⁴, F^{3,5}) = 21 Hz, 1F, F⁴), −163.9 (m, 2F, F^{3,5}), −138.9 (s, Δν_{1/2} = 54 Hz, 2F, BF₂). ¹¹B NMR (CD₃CN, 24 °C): δ 1.7 (s, Δν_{1/2} = 46 Hz). ¹³C{¹⁹F} NMR (CD₃CN, 24 °C): δ 148.7 (C^{2,6}), 141.2 (C⁴), 137.5 (C^{3,5}), the resonance of C¹ was not detected. ¹H NMR (CD₂Cl₂, 24 °C): δ 2.15 (s, 3H, CH₃). ¹⁹F NMR (CD₂Cl₂, 24 °C): δ -135.3 (m, 2F, F^{2,6}), −155.8 (t, ³*J*(F⁴, F^{3,5}) = 20 Hz, 1F, F⁴), −164.4 (m, 2F, F^{3,5}), −136.5 (s, Δν_{1/2} = 33 Hz, 2F, BF₂).

4.6. Preparation of [BrF₂][SbF₆]

The synthesis was performed in a 23-mm i.d. FEP trap equipped with a Teflon-coated magnetic stir bar. The trap was connected to a stainless steel vacuum line. The trap was charged with BrF₃ (1 mL, 2.8 g, 20 mmol) and SbF₅ (0.8 mL, 2.4 g, 11 mmol) was added in portions within 5 min. The temperature was increased to 60–80 °C, and the reddish solution was stirred for 30 min. All volatiles were removed under reduced pressure at 80–90 °C to yield a fine lemon powder. The product (3.3 g, 85%) was stored inside a glove-box under an atmosphere of dry argon. The ¹⁹F NMR spectrum of [BrF₂][SbF₆] in aHF at –40 °C consisted only of one BrF resonance at –73.5 ppm ($\Delta v_{1/2}$ = 106 Hz) ([BrF₂]⁺) which became very broad at 0 °C. In the presence of SbF₅ (five fold molar excess) the signal of [BrF₂]⁺ was located at –72.9 ppm and underwent a reversible broadening from $\Delta v_{1/2}$ = 47–53 Hz (–40 °C) to ~240 Hz (–20 °C) and >1000 Hz (0 °C). In both cases, the Sb-F resonances were presented by very broad signals at –120 to –125 ppm.

4.7. Bromine trifluoride in fluoroorganic solvents: stability, behaviour towards BF₃, and NMR properties

A. 3.5-mm i.d. FEP inliners were charged with different organic solvents (0.4 mL) and BrF₃ (20–30 mg). The two-phase systems were maintained for 1 h at 25 °C with periodic shaking before the upper organic phase was decanted. No ¹⁹F NMR signal of BrF₃ was detected in case of perfluorohexane, perfluoromethylcyclohexane, perfluoro-2-methylpent-2-ene, and perfluorotributylamine. In case of trichlorofluoromethane and 1,1,2-trichlorotrifluoroethane the upper phase showed the presence of BrF₃. BrF₃ is miscible with PFP (5–10 °C) and PFB (25 °C) in any proportions giving yellowish solutions. No reaction was detected in the solution of BrF₃ in PFP, PFB (25 °C, over weeks), and 1,1,2-trichlorotrifluoroethane (25 °C, 26 h). In contrast, after 3 d the signal of BrF₃ in 1,1,2-C₂Cl₃F₃ disappeared and a significant amount of CClF₂CClF₂ was formed. With CCl₃F bromine trifluoride reacted above 10 °C to yield predominantly CCl₂F₂ (¹⁹F NMR).

The solubility of BrF₃ was determined to 79 mg (0.57 mmol) per mL of 1,1,2-trichlorotrifluoroethane (19 F NMR, 24 $^{\circ}$ C).

BrF₃. ¹⁹F NMR (PFB, 24 °C): δ –17.9 (s, $\Delta \nu_{1/2}$ = 27 Hz); (PFP, –10 °C): δ –17.3 (s, $\Delta \nu_{1/2}$ = 56 Hz); (CCl₂FCClF₂, 24 °C): δ –22.6 (s, $\Delta \nu_{1/2}$ = 71 Hz); (CCl₃F, 0 °C): δ –27.2 (s, $\Delta \nu_{1/2}$ = 126 Hz) (lit. ¹⁹F NMR (neat, 35 °C): δ –16.3 [17]; (SO₂ClF, –20 °C): δ –16.5 ppm [16]).

(B) A solution of BrF₃ (147 mg, 1.07 mmol) in PFB (0.5 mL) was cooled to -8 °C and BF₃ (2 mmol) was bubbled for 15 min. A high density red phase separated. Warming above 3–5 °C caused the complete dissolution of the dense phase. The NMR spectra contained only one ¹⁹F resonance at -74.8 ppm ($\Delta \nu_{1/2} = 138$ Hz) besides signals of PFB and only one ¹¹B resonance at 0.16 ppm ($\Delta \nu_{1/2} = 8$ Hz). No individual signals of BrF₃ and BF₃ were detected in both, the ¹¹B and ¹⁹F NMR spectra. The solution was kept at -22 °C for 30 min and the mother liquor was decanted from the dense red phase. Cold (-22 °C) PFB (0.5 mL) was added and the inliner was warmed to 24 °C. The solution showed ¹¹B and ¹⁹F NMR spectra of the parent solution: ¹⁹F NMR (PFB): $\delta -68.1$ (s, $\Delta \nu_{1/2} = 553$ Hz). ¹¹B NMR (PFB): $\delta 2.4$ (s, $\Delta \nu_{1/2} = 8$ Hz). No changes were observed when this solution was kept at ~ 20 °C for 24 h.

4.8. Preparation of $[(C_6F_5)_2Br]Y$ salts with pentafluorophenylboron compounds

4.8.1. Reaction of BrF_3 with $C_6F_5BF_2$ (1:2)

A 23-mm i.d. FEP trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of BrF₃ (0.80 mmol) in PFB (1.2 mL) and cooled to -25 °C. Then a cold (-15 °C) solution of C₆F₅BF₂ (1.62 mmol) in PFB (4 mL) was added in portions. The white suspension was stirred at -20 °C for 20 min, at 0 °C for 10 min and kept at -30 °C for 30 min without stirring. The mother

liquor was decanted, the precipitate was washed with CH_2Cl_2 (4 mL) at 20 °C and pumped in vacuum for 30 min to yield [(C_6F_5)_2Br][BF_4] (333 mg, 83%).

4.8.2. Reaction of BrF_3 with $C_6F_5BF_2$ (1:1)

A 23-mm i.d. FEP trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of BrF₃ (146 mg, 1.06 mmol) in PFP (4.5 mL) and cooled to -45 °C. Then a cold (-40 °C) solution of C₆F₅BF₂ (0.94 mmol) in PFP (3 mL) was added in portions. The white suspension was stirred at -40 °C for 1 h and at 0 °C for 30 min. The mother liquor was decanted, the precipitate was washed with PFP (2 mL) at 0 °C, dried in vacuum at 0 °C for 30 min and 24 °C for 1 h to yield [(C₆F₅)₂Br][BF₄] (200 mg, 85%). The decanted mother liquor contained *cyclo*-1-Br-1,4-C₆F₇ (yield 3%) and *cyclo*-1-BrC₆F₉ (yield 5%) while resonances of C₆F₅Br and C₆F₅BrF₂ were not detected. To prove the presence of BrF₃, pentafluorobenzene (in excess) was added. The ¹⁹F NMR spectrum showed the formation of C₆F₅Br and increasing amounts of *cyclo*-1-Br-1,4-C₆F₇ and *cyclo*-1-BrC₆F₉.

4.8.3. Reaction of BrF_3 with $C_6F_5BF_2$ ·NCCH₃ (1:1)

A solution of BrF₃ (37 mg, 0.27 mmol) in PFB (1.2 mL) was cooled to -20 °C and a cold (-20 °C) solution of C₆F₅BF₂·NCCH₃ (0.27 mmol) in CH₃CN (0.5 mL) was added in portions. The colorless solution was stirred at -20 °C for 30 min and warmed to 24 °C. The ¹⁹F NMR spectrum pointed out the formation of [(C₆F₅)₂Br][BF₄] and C₆F₅Br (1:1).

4.8.4. Reaction of BrF_3 with $K[C_6F_5BF_3]$ (1:1)

A cold (-40 °C) solution of BrF₃ (95 mg, 0.69 mmol) in aHF (0.7 mL) was added in portions to a cold (-40 °C) stirred solution of K[C₆F₅BF₃] (190 mg, 0.69 mmol) in aHF (2.5 mL). After stirring at -30 °C for 1 h, the solution contained [(C₆F₅)₂Br][BF₄], C₆F₅Br, and *cyclo*-1-Br-1,4-C₆F₇ (¹⁹F NMR). The solution was extracted with CCl₄ at 0 °C. The extract contained C₆F₅Br (0.10 mmol), *cyclo*-1-Br-1,4-C₆F₇ (0.16 mmol), and *cyclo*-4-BrC₆F₉ (0.06 mmol), while the acid phase contained [(C₆F₅)₂Br][BF₄] (0.16 mmol, 45% yield) and weak signals of perfluorinated unsaturated products.

4.8.5. Reaction of $[BrF_2][SbF_6]$ with $K[C_6F_5BF_3]$ (1:2)

A cold (-15 °C) solution of [BrF₂][SbF₆] (90 mg, 0.25 mmol) in aHF (0.5 mL) was added in three portions to a cold (-55 °C) stirred solution of K[C₆F₅BF₃] (143 mg, 0.52 mmol) in aHF (1 mL). The suspension was stirred at -45 °C for 1 h and at -10 °C for 20 min. The pink solution contained [(C₆F₅)₂Br]⁺, [C₆F₅BF₃]⁻, [BF₄]⁻, C₆F₅Br, C₆F₅H (15:32:46:4:3) (¹⁹F NMR, -10 °C). The solution was stirred at 0 °C for 1.5 h and at 25 °C for 2 h to complete the conversion of residual K[C₆F₅BF₃] to C₆F₅H and [BF₄]⁻ [43] (¹⁹F NMR). After evaporation in vacuum at 25 °C the residue was washed with pentane (2×1.5 mL), dried in vacuum, and extracted with MeCN (0.6 mL). The extract contained the salt [(C₆F₅)₂Br][SbF₆] [11] (0.08 mmol (31%) based on K[C₆F₅BF₃]).

4.8.6. Reaction of BrF_3 with $(C_6F_5)_3B$ (3:2)

BrF₃ (9.9 mg, 0.072 mmol) was suspended in cold (-78 °C) CH₂Cl₂ (0.25 mL). Solid (C₆F₅)₃B (25 mg, 0.049 mmol) was added and the mixture was vigorously agitated at -78 °C and finally warmed up in steps (-60 °C, -50 °C) under ¹⁹F NMR control. The relative molar ratio of products in the suspension did not change: [(C₆F₅)₂Br]⁺ (100%), [(C₆F₅)₃BF]⁻ (99%), C₆F₅Br (81%) C₆F₅D (17%), (C₆F₅)₃B (4%). After warming to 35 °C the mother liquor was decanted and the solid residue was dried in vacuum to yield [(C₆F₅)₂Br]Y salts (23.1 mg, 59%) (Y = [(C₆F₅)₃BF]⁻, [C₆F₅BF₃]⁻, [BF₄]⁻) in the molar ratio [(C₆F₅)₂Br]⁺:[(C₆F₅)₃BF]⁻:[C₆F₅BF₃]⁻: [BF₄]⁻ = 100:2:33:65.

Treatment of the mother liquor with solid BF₃·NCCH₃ (3 mg, 0.028 mmol) resulted again in a suspension. After separation the precipitate was dissolved in MeCN and the ¹⁹F NMR spectrum showed the signals of [(C₆F₅)₂Br][BF₄] besides traces of BF₃·NCCH₃ and C₆F₅Br. The mother liquor contained (C₆F₅)₃B·NCCH₃, (C₆F₅)₂BF·NCCH₃, BF₃·NCCH₃, C₆F₅Br, and C₆F₅D in the molar ratio 89:26:81:100:37.

4.8.7. Reaction of BrF_3 with $(C_6F_5)_3B$ and BF_3 ·NCCH₃ (3:2:1)

Solid BF₃·NCCH₃ (61 mg, 0.56 mmol) was added to a cold $(-70 \,^{\circ}\text{C})$ solution of $(C_6F_5)_3B$ (590 mg, 1.15 mmol) in CH₂Cl₂ (10 mL). The suspension was warmed to 20 $\,^{\circ}\text{C}$ within 30 min and after 1 h at 20 $\,^{\circ}\text{C}$ a solution resulted which contained $(C_6F_5)_3B$ ($\delta(F) = -129.5$, -146.2, and -161.8) and $(C_6F_5)_3B$ ·NCCH₃ ($\delta(F) = -134.8$, -157.5, and -164.7) in the molar ratio 100:80. Boron trifluoride was not detected by ¹⁹F NMR although opening of the trap went along with the escape of a fuming gas, presumably, BF₃. The solution was cooled to $-78 \,^{\circ}\text{C}$ and formed a suspension which was quantitatively transferred to a suspension of BrF₃ (237.5 mg, 1.74 mmol) in CH₂Cl₂ (1.2 mL, $-78 \,^{\circ}\text{C}$). The cold mixture was stirred for 1 h before it was warmed to 20 $\,^{\circ}\text{C}$ within 0.5 h and finally stored overnight.

The decanted mother liquor showed ¹⁹F resonances of $[(C_6F_5)_2Br][(C_6F_5)_3BF]$ and C_6F_5Br (37:63). The solid was washed with CH₂Cl₂ (2× 1.5 mL) and dried in vacuum to give the bromonium salts $[(C_6F_5)_2Br][BF_4]$ and $[(C_6F_5)_2Br][C_6F_5BF_3]$ (554 mg) (94:6) (¹⁹F NMR in MeCN).

4.8.8. Reaction of BrF₃ with (C_6F_5)₃B (3:2) and BF₃·NCCH₃ in CH₂Cl₂ Borane 1 (1.94 g, 3.79 mmol) was added to the cold (-78 °C) suspension of BrF₃ (766 mg, 5.60 mmol) in CH₂Cl₂ (50 mL) and stirred at -70 °C. After 1.5 h the mother liquor did not contain borane **1** (¹⁹F NMR). Then BF₃·NCCH₃ (203 mg, 1.86 mmol) was added. After stirring at -70 °C for 0.5 h, the temperature was increased to 20 °C. The mother liquor was decanted. The solid residue was washed with CH₂Cl₂ (2× 10 mL) and dried in vacuum to yield 2.4 g (4.78 mmol, 86%) of [(C_6F_5)₂Br][BF₄].

4.8.9. Reaction of $(C_6F_5)_3B$ with BrF_3 (2:3) and $BF_3 \cdot NCCH_3$ in CH_2Cl_2

A solution of $(C_6F_5)_3B$ (945 mg, 1.85 mmol) in CH₂Cl₂ (20 mL) was prepared in a FEP trap and cooled to -78 °C forming a suspension. Bromine trifluoride BrF₃ (385 mg, 2.81 mmol) was dropped onto the cold wall of the FEP trap and solidified. After knocking at the trap, BrF₃ released from the wall and sunk into the stirred suspension of **1**. Within 2 h the temperature was increased to -60 °C under stirring. The ¹⁹F NMR spectrum showed the absence of $(C_6F_5)_3B$ and the presence of resonances at -133.0, -142.7, and -156.5 ppm (2:1:2) (presumably $(C_6F_5)_2BrF$) and C_6F_5Br (10:9) besides C_6F_6 (traces). Then BF₃·NCCH₃ (101 mg, 0.93 mmol) was added to the suspension and the temperature was increased to 20 °C within 1 h. The precipitate was separated, dissolved in MeCN (2 mL) and re-precipitated by addition of CH₂Cl₂ (15 mL). The mother liquor was decanted and the solid dried in vacuum to yield $[(C_6F_5)_2Br][BF_4]$ (1.134 g, 2.26 mmol, 82%).

4.9. Reaction of BrF_3 with $C_6F_5SiF_3$ (1:2)

A 23-mm i.d. FEP trap was charged with $C_6F_5SiF_3$ (5.283 g, 20.05 mmol), CH_2Cl_2 (10 mL) and NaF (102 mg, 2.43 mmol) and cooled to -60 °C. In a second 23-mm i.d. FEP trap BrF₃ (1.43 g, 10.45 mmol) was frozen at -78 °C and cold (-78 °C) CH_2Cl_2 (35 mL), cold (-40 °C) MeCN (1.1 mL, 21.05 mmol) and NaF (106 mg, 2.52 mmol) were added in sequence. CAUTION! BrF₃ can react violently with neat MeCN [44]. The suspension was stirred at -78 °C for 10 min to remove traces of HF and the light-yellow mother liquor (BrF₃ in $CH_2Cl_2/MeCN$) was added drop-wise

to the trap with $C_6F_5SiF_3$ within 15 min. The suspension was stirred for further 1.5 h at -78 °C and 1 h at -60 °C. The amount of solid corresponded to the NaF quantity. A probe of the mother liquor contained $C_6F_5BrF_2$ and $C_6F_5SiF_3$ in a molar ratio of 1:1 (¹⁹F NMR). When the temperature was increased to -30 °C overnight, a colorless solid precipitated. The suspension was warmed to -15 °C within 7 h before mother liquor (A) was decanted from precipitate (A) (3.99 g, including NaF). Stirring of mother liquor (A) at -40 to -10 °C for 12 h and at 0 °C for 24 h resulted in a suspension again. Precipitate (B) was separated and dried in vacuum to give product (B) (1.15 g). Both solids (A) and (B) were washed with CH₂Cl₂, dried in vacuum and extracted with MeCN. The solvent was evaporated under reduced pressure forming the colorless salt [(C_6F_5)₂Br][SiF₅] (4.93 g, 92%).

[(C_6F_5)₂Br][SiF₅]. ¹⁹F NMR (CD₃CN): δ –129.0 (m, 4F, F^{2.6}), -137.1 (s, $\Delta v_{1/2}$ = 9 Hz, 5F, SiF₅⁻), -139.0 (tt, ³*J*(F⁴, F^{3.5}) = 20 Hz, ⁴*J*(F⁴, F^{2.6}) = 7 Hz, 2F, F⁴), -154.7 (m, 4F, F^{3.5}).

Salt $[(C_6F_5)_2Br][SiF_5]$ decomposed exothermically at 207 °C (DTA). A CDCl₃ solution of the decomposition product exhibited a 1:0.8 molar ratio of C_6F_5Br and C_6F_6 .

4.10. Reaction of BrF_3 with $C_6F_5SiMe_3$ (1:2) in the presence of MeCN

A 23-mm i.d. FEP trap was charged with $C_6F_5SiMe_3$ (2.15 g, 8.95 mmol), CH_2Cl_2 (5 mL) and NaF (50 mg, 1.19 mmol) and cooled to -90 °C. A solution of BrF₃ (610 mg, 4.46 mmol) in CH_2Cl_2 (15 mL) and MeCN (0.465 mL, 8.9 mmol) over NaF (50 mg, 1.19 mmol) was prepared in a 23-mm i.d. FEP trap as described above (4.9). After 10 min of stirring at -78 °C (to remove traces of HF) the BrF₃ solution was added drop-wise to the trap with $C_6F_5SiMe_3$ (-90 °C). After 4 h at -90 °C, the reaction mixture was kept at -70 °C for 12 h and then warmed to 0 °C. The mother liquor was separated from the precipitate, evaporated to dryness in vacuum and the solid residue was re-crystallized from CCl₃F yielding $C_6F_5BrF_2$ (730 mg, 2.56 mmol) (58% related to BrF₃). Dissolution of the precipitate in an aqueous solution of Na[BF₄] confirmed the absence of [($C_6F_5)_2Br$]Y salts (¹⁹F NMR).

4.11. Reaction of BrF_3 with $C_6F_5SiMe_3$ (1:2) in the presence of $BF_3 \cdot OEt_2$

The reaction was performed in analogy to the above one (4.10). A cold $(-78 \degree C)$ solution of C₆F₅SiMe₃ (4.33 g, 14.8 mmol) and BF₃·OEt₂ (1.8 mL, 14.6 mmol) in CH₂Cl₂ (8 mL) was stirred over NaF (86 mg, 2.05 mmol) before being added drop-wise to a cold suspension of BrF₃ (1.01 g, 7.38 mmol) in CH₂Cl₂ (25 mL) and MeCN (0.77 mL, 14.7 mmol) which contained NaF (90 mg, 2.14 mmol). The light-yellow suspension discolored after 1 h at -78 °C. The mother liquor contained C₆F₅SiMe₃, C₆F₅Br, Me₃SiF, and $[BF_4]^-$ in the molar ratio 30:19:9:42, while no BrF₃ or C₆F₅BrF₂ was found (¹⁹F NMR). This composition was not changed after 12 h at -78 °C. The liquid phase was separated. The solid was dried in vacuum at -30 to 20 °C and suspended in MeCN. The ¹⁹F NMR spectrum of the MeCN suspension showed signals of $[BF_4]^-$ as major component with its ^{10/11}B isotopomers (-150.65/ -150.70 ppm) besides a minor unknown species (-65.1 ppm, g, J = 17 Hz).

4.12. Preparation of $[(CF_3C \equiv C)_2Br][BF_4]$ (5)

A 11.7-mm i.d. PFA trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of BrF_3 (97 mg, 0.70 mmol) in PFP (1 mL) and cooled to -45 °C. A cold (-45 °C) solution of $CF_3C\equiv CBF_2$ (0.80 mmol) in PFP (2 mL) was added in portions within 2 min. The white suspension was stirred at -40 °C for 1 h, centrifuged at -78 °C and the mother liquor was decanted. The white precipitate was washed with cold (-40 °C) PFP (2 mL)

and dried in vacuum at -30 °C for 1 h to yield [(CF₃C \equiv C)₂Br][BF₄] (56 mg, 31%).

Attempts to dissolve [(CF₃C≡C)₂Br][BF₄] in cold (-25 °C) MeCN led to vigorous reactions and formation of a complex mixture (¹⁹F). [(CF₃C≡C)₂Br][BF₄] (**5**). ¹⁹F NMR (aHF, -40 °C): δ -52.6 (s, 6F, F³), -148.6 (q (1:1:1:1), ¹*J*(F, B) = 12 Hz, [BF₄]⁻). ¹¹B NMR (aHF, -40 °C): δ -2.1 (quintet, ¹*J*(B, F) = 12 Hz, [*B*F₄]⁻). ¹³C NMR (aHF, -40 °C): δ 112.4 (q, ¹*J*(C³, F³) = 264 Hz, C³), 83.2 (q, ²*J*(C², F³) = 61 Hz, C²), 44.1 (q, ³*J*(C¹, F³) = 8 Hz, C¹).

4.13. Preparation of [(CF₃CF=CF)₂Br]Y salts

A 8-mm i.d. FEP trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of BrF_3 (0.14 mmol) in PFP (1 mL) and cooled to -45 °C. Then a cold (-45 °C) solution of trans-CF₃CF=CFBF₂ (0.29 mmol) in PFP (1.5 mL) was added in portions. After stirring at -40 °C for 1 h and at -30 °C for 1 h, [(trans- $CF_3CF=CF_2Br]^+$ (8a), [trans-CF_3CF=CFBF_3] - and trans-CF_3CF=CFBF_2 were the major components of the colorless solution (19F NMR, -30 °C). A second portion of cold (-10 °C) BrF₃ (0.14 mmol) in PFP (1 mL) was added to the cold (-40 °C) stirred reaction solution. The solution was stirred at -35 °C for 40 min and then evaporated at -10 °C in vacuum to dryness. A solution of the product in MeCN contained $[(trans-CF_3CF=CF)_2Br]^+$ (8a), $[(cis-CF_3CF=CF)(trans-CF_3C$ (94:6), $CF_3CF=CF)Br]^+$ (**8b**) $[trans-CF_3CF=CFBF_3]^-$, [cis-CF₃CF=CFBF₃]⁻, and [C₃F₇BF₃]⁻ (60:32:8) (yield 0.13 mmol).

 $[(CF_3CF=CF)_2Br][CF_3CF=CFBF_3/C_3F_7BF_3]$. ¹⁹F NMR (CH₃CN, -10° C): $\delta -67.8$ (dd, 3 /(F³, F²) = 3 /(F³, F²) = 10 Hz, 4 /(F³, F^{1}) = ${}^{4}I(F^{3'}, F^{1'})$ = 19 Hz, 6F, $F^{3}, F^{3'}$), -106.4 (qdd, ${}^{4}I(F^{1}, F^{3})$ = ${}^{4}I(F^{1'}, F^{3'})$ $F^{3'}$ = 19 Hz, ${}^{3}J(F^{1}, F^{2}) = {}^{3}J(F^{1'}, F^{2'}) = 129$ Hz, ${}^{5}J(F^{1}, F^{2'}) = {}^{5}J(F^{1'}, F^{2'}) = {}^{5}J(F^{1'}) = {}^{5}J(F$ F^2) = 5 Hz, 2F, F^1 , $F^{1'}$), -139.4 (md, 3 /(F^2 , F^1) = 3 /($F^{2'}$, $F^{1'}$) = 129 Hz, 2F, F^2 , $F^{2'}$) (trans, trans-isomer (**8a**)); -66.5 (dd, ${}^3J(F^3, F^2) = 11$ Hz, ${}^{4}I(F^{3}, F^{1}) = 7 \text{ Hz}, 3F, F^{3}), -94.5 \text{ (qd, } {}^{4}I(F^{1}, F^{3}) = 7 \text{ Hz}, {}^{3}I(F^{1}, F^{2}) = 42 \text{ Hz},$ 1F, F¹), -121.3 (qd, ${}^{3}J(F^{2}, F^{3}) = 11$ Hz, ${}^{3}J(F^{2}, F^{1}) = 42$ Hz, 1F, F²) (*cis*moiety of cis, trans-isomer (**8b**)), $-67.4 (dd, {}^{3}I(F^{3'}, F^{2'}) = 11 Hz, {}^{4}I(F^{3'}, F^{2'})$ $F^{1'}$ = 22 Hz, 3F, $F^{3'}$, -107.5 (qd, ${}^{4}J(F^{1'}, F^{3'})$ = 20 Hz, ${}^{3}J(F^{1'}, F^{3'})$ $F^{2'}$ = 129 Hz, 1F, $F^{1'}$, -140.0 (d, ${}^{3}J(F^{2'}, F^{1'})$ = 128 Hz, 1F, $F^{2'}$) (transmoiety of cis, trans-isomer (**8b**)); -80.4 (tt, ${}^{3}J(F^{3}, F^{2}) = 3$ Hz, ${}^{4}J(F^{3}, F^{2}) = 3$ Hz, ${}^{4}J(F^$ F^{1}) = 9 Hz, 3F, F^{3}), -127.7 (m, 2F, F^{2}), -134.0 (m, 2F, F^{1}), -150.9 (q $(1:1:1:1), {}^{1}J(F, B) = 40 \text{ Hz}, 3F, BF_{3}^{-})([C_{3}F_{7}BF_{3}]^{-}); -66.4 \text{ (m, 3F, }F^{3}\text{)},$ -137.1 (m, 1F, F¹), -158.8 (m, 1F, F²), -140.9 (q (1:1:1:1), ¹J(F, B) = 38 Hz, 3F, BF_3^{-}) ([*cis*-CF₃CF = CFBF₃]⁻); -66.8 (dd, ³J(F³, F^2) = 11 Hz, ${}^4J(F^3, F^1)$ = 23 Hz, 3F, F^3), -156.1 (d, ${}^3J(F^1, F^2)$ = 129 Hz, $1F, F^{1}$, $-179.6(d, {}^{3}J(F^{2}, F^{1}) = 129 \text{ Hz}, 1F, F^{2}$, $-142.2(q(1:1:1:1), {}^{1}J(F, F^{2}))$ B) = 39 Hz, 3F, BF_3^{-}) ([*trans*-CF_3CF=CFBF_3]⁻).

4.14. Preparation of $[(C_2F_5CF=CF)_2Br]Y$ salts

(A) A 11.7-mm i.d. PFA trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of BrF₃ (0.5 mmol) in PFB (0.7 mL) and cooled to -20 °C. A cold (-20 °C) solution of *cis*-C₂F₅CF = CFBF₂ (1.0 mmol) in PFB (1.5 mL) was added in portions. After stirring at -20 °C for 2 h the ¹⁹F NMR spectrum (-20 °C) of the colorless solution showed signals of [(*cis*-C₂F₅CF=CF)₂Br]⁺ (**9a**), [(*cis*-C₂F₅CF=CF)(*trans*-C₂F₅CF=CF)₂Br]⁺ (**9b**), [*cis*-C₂F₅CF=CF)(*trans*-C₂F₅CF=CF)₂Br]⁺ (**9c**). Resonances of BrF₃, C₂F₅CF=CF₂, [BF₄]⁻, and [C₂F₅CFBrCF₂Br]⁻ (**9c**). Resonances of BrF₃, C₂F₅CF=CF₂, [BF₄]⁻, and [C₂F₅CFBrCF₂BF₃]⁻ were not detected. Volatiles were removed in vacuum at 20 °C, the residue was washed with CCl₃F (2 mL) at 15 °C and the solid was dried in vacuum at 20 °C for 3 h to yield [(C₂F₅CF=CF)₂Br]Y [(*cis*, *cis*):(*cis*, *trans*):(*trans*, *trans*) = 90:8:2] (Y = [C₂F₅CF=CFBF₃]⁻ (*cis:trans* = 63:37):[C₄F₉BF₃]⁻ = 70:30) (114 mg).

(B) A 11.7-mm i.d. PFA trap equipped with a Teflon-coated magnetic stir bar was charged with a solution of cis-C₂F₅CF=CFBF₂ (1.0 mmol) in PFB (1.5 mL) and cooled to -20 °C. Then a cold

 $(-20 \degree C)$ solution of BrF₃ (0.5 mmol) in PFB (0.7 mL) was added in portions. After stirring at -20 °C for 2.5 h the ¹⁹F NMR spectrum $(-20 \,^{\circ}\text{C})$ of the colorless solution showed signals of [(*cis*-(9a), $[(cis-C_2F_5CF=CF)(trans-C_2F_5CF=CF)Br]^+$ $C_2F_5CF=CF_2Br^{\dagger}$ (**9b**), [*cis*-C₂F₅CF=CFBF₃]⁻, [C₄F₉BF₃]⁻, C₄F₉Br, C₂F₅CFBrCF₂Br, *cis*- $C_2F_5CF = CFBr$, and trans- $C_2F_5CF = CFBr$ (molar ratio 29:8:29:8:6:3:5:12) besides a trace of [(trans-C₂F₅CF=CF)₂Br]⁺ (**9c**). Resonances of BrF_3 and $[BF_4]^-$ were not detected. In order to react still present *cis*-C₂F₅CF=CFBF₂, a further portion of BrF₃ (0.3 mmol) in PFB (0.1 mL) was added at $-15 \degree$ C. Stirring at $-15 \degree$ C for 1 h resulted in a suspension and the ¹⁹F NMR spectrum showed the complete consumption of *cis*-C₂F₅CF=CFBF₂. Volatiles were removed in vacuum at 20 °C, the residue was washed with CCl₃F $(2 \times 2 \text{ mL})$ at 15 °C and the solid was dried in vacuum at 20 °C for 1 h to yield $[(C_2F_5CF=CF)_2Br]Y$ [(cis, cis):(cis, trans):(trans, cis):(trans, cis):(trans,*trans*) = 80:18:2] [Y = $[C_4F_9BF_3]^{-}/[BF_4]^{-}(24:76)]$ (167 mg).

1,2-Dibromooctafluorobutane. ¹⁹F NMR (PFB, $-20 \,^{\circ}$ C): δ -56.5 (d, ²*J*(F^{1A}, F^{1B}) = 178 Hz, 1F, F^{1A}), -57.4 (d, ²*J*(F^{1B}, F^{1A}) = 178 Hz, 1F, F^{1B}), -77.6 (ddd, ⁴*J*(F⁴, F²) = 11 Hz, ³*J*(F⁴, F^{3A}) = 5 Hz, ³*J*(F⁴, F^{3B}) = 6 Hz, 3F, F⁴), -124.8 (m, 2F, F^{3A, 3B}), -131.1 (m, 1F, F²).

 $[(C_2F_5CF=CF)_2Br][C_4F_9BF_3]$. ¹⁹F NMR (PFB, -20 °C): δ -82.0 (t, ${}^{3}J(F^{4}, F^{3}) = {}^{3}J(F^{4'}, F^{3'}) = 6 \text{ Hz}, 6F, F^{4}, F^{4'}), -92.9 \text{ (md, } {}^{3}J(F^{1}, F^{2}) = {}^{3}J(F^{1'}, F^{2'})$ $F^{2'}$ = 48 Hz, 2F, F¹, F^{1'}), -114.5 (md, ³J(F², F¹) = ³J(F^{2'}, F^{1'}) = 48 Hz, 2F, F², F²'), -116.9 (m, 4F, F³, F³') (*cis*, *cis*-isomer **9a**); -82.2 (m, 3F, F^4), -90.2 (dd, ${}^3J(F^1, F^2) = 48$ Hz, ${}^4J(F^1, F^{1'}) = 6$ Hz, 1F, F^1), -115.0 (d, ${}^{3}J(F^{2}, F^{1}) = 48$ Hz, F, F²), -117.2 (m, 2F, F³) (*cis*-moiety of *cis*, *trans*isomer **9b**), $-82.7 (m, 3F, F^{4'})$, $-107.9 (dt, {}^{3}J(F^{1'}, F^{2'}) = 130 \text{ Hz}$, ${}^{4}J(F^{1'}, F^{2'}) = 130 \text{$ $F^{3'}$) = 25 Hz, 1F, $F^{1'}$), -120.3 (dd, ${}^{4}J(F^{3'}, F^{1'})$ = 25 Hz, ${}^{3}J(F^{3'}, F^{1'})$ $F^{2'}$) = 12 Hz, 2F, $F^{3'}$), -130.8 (d, ${}^{3}J(F^{2'}, F^{1'})$ = 130 Hz, 1F, $F^{2'}$) (trans-moiety of cis, trans-isomer **9b**); -82.8 (m, 6F, F^4 , $F^{4'}$). -107.0 (dt, ${}^{3}J(F^{1}, F^{2}) = {}^{3}J(F^{1'}, F^{2'}) = 130$ Hz, ${}^{4}J(F^{1}, F^{3}) = {}^{4}J(F^{1'})$ $F^{3'}$) = 25 Hz, 2F, F^{1} , $F^{1'}$), -120.4 (m, 4F, F^{3} , $F^{3'}$), -132.7 (d, ${}^{3}J$ (F^{2} , F^{1}) = ${}^{3}J(F^{2'}, F^{1'})$ = 130 Hz, 2F, $F^{2}, F^{2'}$) (trans, trans-isomer **9c**); -80.1 $(t, {}^{4}I(F^{4}, F^{2}) = 10 \text{ Hz}, 3F, F^{4}), -123.5 (m, 2F, F^{2}), -125.5 (m, 2F, F^{3}),$ -133.6 (m, 2F, F¹), ~ -150 (very br, 3F, BF₃⁻) ([C₄F₉BF₃]⁻) (bromonium salt with $[BF_4]^-$ counteranion is insoluble in PFB).

 $[(C_2F_5CF = CF)_2Br][BF_4 + C_4F_9BF_3]$. ¹⁹F NMR (CH₃CN, 24 °C): δ $-81.5 \text{ (m, 6F, F}^4, F^{4'}), -89.8 \text{ (md, }^3J(F^1, F^2) = {}^3J(F^{1'}, F^{2'}) = 44 \text{ Hz}, 2F,$ $F^{1},F^{1'}$), -116.8 (m, 4F, $F^{3},F^{3'}$), -119.1 (md, ${}^{3}J(F^{2}, F^{1}) = {}^{3}J(F^{2'}, F^{2'})$ $F^{1'}$) = 44 Hz, 2F, F^2 , F^2 , F^2) (*cis*, *cis*-isomer **9a**); -81.7 (m, 3F, F^4), -87.2 (d, ${}^{3}J(F^{1}, F^{2}) = 44$ Hz, 1F, F¹), -116.9 (m, 2F, F³), -118.8 (d, ${}^{3}J(F^{2}, F^{1}) = 44 \text{ Hz}, F, F^{2})$ (*cis*-moiety of *cis*, *trans*-isomer **9b**), -82.6 (m, 3F, $F^{4'}$), -106.5 (dt, ${}^{3}J(F^{1'}, F^{2'}) = 130 \text{ Hz}$, ${}^{4}J(F^{1'}, F^{3'}) = 25 \text{ Hz}$, 1F, F^{1'}), -120.3 (ddq, ${}^{4}J(F^{3'}, F^{1'}) = 25 \text{ Hz}$, ${}^{3}J(F^{3'}, F^{2'}) = 12 \text{ Hz}$, ${}^{3}J(F^{3'}, F^{2'}) = 12 \text{ Hz}$, ${}^{3}J(F^{3'}, F^{3'}) = 12 \text{ Hz}$, ${}^{3}J(F^{3'}) = 12 \text{ Hz}$, ${}^{3}J(F^$ $F^{4'}$) = 2 Hz, 2F, $F^{3'}$), -136.1 (d, ${}^{3}J(F^{2'}, F^{1'})$ = 128 Hz, 1F, $F^{2'}$) (transmoiety of *cis*, *trans*-isomer **9b**); -82.7 (m, 6F, F⁴, F^{4'}), -105.6 (dt, ${}^{3}J(F^{1}, F^{2}) = {}^{3}J(F^{1'}, F^{2'}) = 128 \text{ Hz}, {}^{4}J(F^{1}, F^{3}) = {}^{4}J(F^{1'}, F^{3'}) = 26 \text{ Hz}, 2F,$ $F^{1},F^{1'}$), -120.4 (dd, ${}^{3}J(F^{3}, F^{2}) = {}^{3}J(F^{3'}, F^{2'}) = 13$ Hz, ${}^{4}J(F^{3}, F^{1}) = {}^{4}J(F^{3'}, F^{3'}) = {}^{4}J(F^{3'}) = {}^{4}J(F^{3'}$ $F^{1'}$) = 26 Hz, 4F, F^3 , $F^{3'}$), -135.4 (d, ${}^{3}J(F^2, F^1) = {}^{3}J(F^{2'}, F^{1'}) = 128$ Hz, 2F, $F^{2},F^{2'}$) (trans, trans-isomer **9c**); -80.6 (tt, ${}^{3}J(F^{4}, F^{3}) = 3$ Hz, ${}^{4}J(F^{4}, F^{3}) = 3$ F^2) = 10 Hz, 3F, F^4), -123.8 (m, 2F, F^2), -125.4 (m, 2F, F^3), -133.0 (m, 2F, F^1), -150.9 (q (1:1:1:1), ${}^{1}J(F, B) = 41 \text{ Hz}$, 3F, BF_3^{-1}) $([C_4F_9BF_3]^-); -148.0 (s, [BF_4]^-).$

4.15. Reaction of $C_6F_{13}BF_2$ with BrF_3

A cold (-15 °C) solution of BrF₃ (0.30 mmol) in PFP (0.5 mL) was added in one portion to a cold (-65 °C) solution of C₆F₁₃BF₂ (0.50 mmol) in PFP (3 mL). After stirring at -60 °C for 1 h the solution contained still residual C₆F₁₃BF₂ besides the products C₆F₁₃Br and C₆F₁₄ (55:22:23) (¹⁹F NMR). A second portion of BrF₃ (0.20 mmol) in PFP (0.2 mL) was added at -60 °C. The solution was stirred at -60 °C for 1 h and then at -10 °C for 1 h. The NMR spectra displayed resonances of C₆F₁₃Br and C₆F₁₄ (1:1) besides traces of C₆F₁₃BF₂ (¹⁹F NMR) and BF₃ (¹¹B NMR). To determine the quantity of unreacted BrF₃, the solution was treated with C₆F₅H (93 mg, 0.55 mmol) at -5 °C for 1.5 h. The ¹⁹F NMR spectrum showed partial conversion of C₆F₅H (0.30 mmol, unreacted) into C₆F₅Br (0.11 mmol), 1-H-heptafluorocyclohexa-1,4-diene (0.08 mmol) and 1-bromoheptafluorocyclohexa-1,4-diene (trace). Thus, ca. 0.30 mmol of BrF₃ had reacted with C₆F₁₃BF₂.

4.16. Reactions of $C_8F_{17}Br$ with BrF_3 and with $[BrF_2][SbF_6]$

(A) A solution of $C_8F_{17}Br$ (179 mg, 0.35 mmol) and BrF_3 (35 mg, 0.25 mmol) in PFB (0.5 mL) was stirred at 24 °C for 17 h. The ¹⁹F NMR spectrum displayed resonances of the unchanged starting materials $C_8F_{17}Br$ (-62.7 (CF_2Br), -80.3 (CF_3), -116.2, -119.7, -120.5, -121.5, -125.1 ($6CF_2$) ppm) and BrF_3 (-14.6 ppm) besides PFB.

(B) The above solution was cooled to 0 °C and BF₃ was bubbled into the solution for 5 min before the solution was kept at 24 °C for 1 h. The ¹⁹F and ¹¹B NMR spectra showed the formation of "BrF₃·BF₃" ($\delta(F)$: -87 ppm and $\delta(B)$: 2.4 ppm) besides unchanged C₈F₁₇Br. When the solution was kept at 24 °C for 3 d, perfluorooctane was formed in quantitative yield.

(C) A solution of [BrF₂][SbF₆] (46 mg, 0.13 mmol) in aHF (1 mL) was cooled to -40 °C and C₈F₁₇Br (0.4 mL) was added. The mixture was stirred at 24 °C for 3 h before the upper acidic phase was decanted at 10 °C. The ¹⁹F NMR spectrum of the organic phase confirmed the quantitative formation of C₈F₁₈.

4.17. Reaction of K[cis-C₂F₅CF=CFBF₃] with BrF₃ in aHF

A solution of K[*cis*-C₂F₅CF=CFBF₃] (190 mg, 0.66 mmol) in aHF (1.6 mL) was cooled to -40 °C and a cold (-30 °C) solution of BrF₃ (94 mg, 0.68 mmol) in aHF (0.6 mL) was added in portions. The reaction mixture was stirred at -30 °C for 2 h and at -20 °C for 0.5 h forming a suspension. The ¹⁹F NMR spectrum showed the complete consumption of [*cis*-C₂F₅CF=CFBF₃]⁻, but signals of [(C₂F₅CF=CF)₂Br]⁺ were not detected. The reaction mixture was extracted with CCl₂FCCIF₂ (1 mL). The extract contained C₂F₅CFBrCF₃ (0.40 mmol, 60%) (¹⁹F NMR). The acidic phase was evaporated to dryness in vacuum and the solid residue was extracted with MeCN (1 mL). The ¹¹B and ¹⁹F NMR spectra showed the formation of K[C₂F₅CFBrCF₂BF₃] (0.10 mmol, 15%).

2-Bromoperfluorobutane (**25**). ¹⁹F NMR (CCl₂FCCF₂, 24 °C): δ -75.9 (qdd, ⁵*J*(F¹, F⁴) = 5 Hz, ⁴*J*(F¹, F^{3A}) = 8 Hz, ⁴*J*(F¹, F^{3B}) = 12 Hz, 3F, F¹), -79.0 (qd, ⁵*J*(F⁴, F¹) = 5 Hz, ⁴*J*(F⁴, F²) = 11 Hz, 3F, F⁴), -116.6 (qdd, ⁴*J*(F^{3A}, F¹) = 8 Hz, ³*J*(F^{3A}, F²) = 8 Hz, ²*J*(F^{3A}, F^{3B}) = 286 Hz, 1F, F^{3A}), -118.1 (qdd, ⁴*J*(F^{3B}, F¹) = 12 Hz, ³*J*(F^{3B}, F²) = 10 Hz, ²*J*(F^{3B}, F^{3A}) = 286 Hz, 1F, F^{3B}), -140.9 (qt, ⁴*J*(F², F⁴) = 11 Hz, ³*J*(F², F³) = 9 Hz, 1F, F²) (lit. [45]: ¹⁹F NMR (neat, -20 °C): δ -76.3 (3F), -79.3 (3F), -117.8 (2F), -141.4 (1F)). ¹⁹F NMR (aHF, -20 °C): δ -74.3 (qdd, ⁵*J*(F¹, F⁴) = 4 Hz, ⁴*J*(F¹, F^{3A}) = 9 Hz, ⁴*J*(F¹, F^{3B}) = 12 Hz, 3F, F¹), -77.4 (qd, ⁵*J*(F⁴, F¹) = 4 Hz, ⁴*J*(F⁴, F²) = 11 Hz, 3F, F⁴), -115.3 (qdd, ⁴*J*(F^{3A}, F¹) = 8 Hz, ³*J*(F^{3A}, F²) = 8 Hz, ²*J*(F^{3A}, F^{3B}) = 287 Hz, 1F, F^{3A}), -116.2 (qdd, ⁴*J*(F^{3B}, F¹) = 12 Hz, ³*J*(F², F⁴) = 11 Hz, ³*J*(F², F³) = 9 Hz, 1F, F²).

$$\begin{split} & \mathsf{K}[\mathsf{C}_2\mathsf{F}_5\mathsf{CFBr}\mathsf{CF}_2\mathsf{BF}_3]\,(\mathbf{K-11}).\,^{19}\mathsf{F}\,\mathsf{NMR}\,(\mathsf{CH}_3\mathsf{CN},24\,^\circ\mathsf{C}):\,\delta-77.3\,(\mathsf{dt},\\ {}^4J(\mathsf{F}^4,\,\mathsf{F}^2)=5\,\mathsf{Hz},\,\,{}^3J(\mathsf{F}^4,\,\mathsf{F}^3)=9\,\mathsf{Hz},\,\,3\mathsf{F},\,\mathsf{F}^4),\,\,-114.3\,\,(\mathsf{qddd},\,\,{}^3J(\mathsf{F}^{3A},\\ \mathsf{F}^4)=8\,\mathsf{Hz},\,\,\,{}^3J(\mathsf{F}^{3A},\,\,\mathsf{F}^{1A})=12\,\mathsf{Hz},\,\,\,{}^3J(\mathsf{F}^{3A},\,\,\mathsf{F}^{1B})=20\,\mathsf{Hz},\,\,\,{}^2J(\mathsf{F}^{3A},\\ \mathsf{F}^{3B})=284\,\mathsf{Hz},\,1\mathsf{F},\,\mathsf{F}^{3A}),\,-115.6\,\,(\mathsf{md},\,\,{}^2J(\mathsf{F}^{3B},\,\mathsf{F}^{3A})=284\,\mathsf{Hz},\,1\mathsf{F},\,\mathsf{F}^{3B}),\\ -118.7\,\,(\mathsf{d},\,\,\,{}^2J(\mathsf{F}^{1A},\,\,\mathsf{F}^{1B})=319\,\mathsf{Hz},\,\,1\mathsf{F},\,\,\mathsf{F}^{1A}),\,\,-122.0\,\,(\mathsf{d},\,\,\,\,{}^2J(\mathsf{F}^{1B},\\ \mathsf{F}^{1A})=319\,\mathsf{Hz},\,1\mathsf{F},\,\,\mathsf{F}^{1B}),\,-136.1\,\,(\mathsf{m},\,1\mathsf{F},\,\mathsf{F}^2),\,\,-149.4\,\,(\mathsf{q}\,\,(1:1:1:1),\\ 1^J(\mathsf{F},\,\mathsf{B})=40\,\mathsf{Hz},\,3\mathsf{F},\,\mathsf{BF}_3^{-}).\,\,^{11}B\,\mathsf{NMR}\,(\mathsf{CH}_3\mathsf{CN},\,24\,^\circ\mathsf{C}):\,\delta-0.7\,\,(\mathsf{tq},\,\,{}^2J(\mathsf{B},\\ \mathsf{F}^1)=20\,\mathsf{Hz},\,\,^1J(\mathsf{B},\,\mathsf{F})=41\,\mathsf{Hz},\,\mathsf{BF}_3^{-}).\,\,^{19}\mathsf{F}\,\mathsf{NMR}\,\,(\mathsf{aHF},-20\,^\circ\mathsf{C}):\,\delta-76.8\,\\(\mathsf{ddd},\,\,^4J(\mathsf{F}^4,\,\mathsf{F}^2)=4\,\mathsf{Hz},\,\,^3J(\mathsf{F}^4,\,\mathsf{F}^{3A})=8\,\mathsf{Hz},\,\,^3J(\mathsf{F}^4,\,\mathsf{F}^{3B})=11\,\mathsf{Hz},\,3\mathsf{F},\,\mathsf{F}^4),\\ -114.2\,\,(\mathsf{md},\,\,^2J(\mathsf{F}^{3A},\,\,\mathsf{F}^{3B})=286\,\mathsf{Hz},\,1\mathsf{F},\,\,\mathsf{F}^{3A}),\,-115.8\,\,(\mathsf{md},\,\,^2J(\mathsf{F}^{3B},\,\mathsf{F}^{3A})=286\,\mathsf{Hz},\,1\mathsf{F},\,\,\mathsf{F}^{1A}),\,-122.6\,\,(\mathsf{md},\,\,^2J(\mathsf{F}^{1B},\,\,\mathsf{F}^{1A})=326\,\mathsf{Hz},\,1\mathsf{F},\,\,\mathsf{F}^{1B}),\,-136.6\,\,(\mathsf{m},\,1\mathsf{F},\,\,\mathsf{F}^2),\\ -122.6\,\,(\mathsf{md},\,\,^2J(\mathsf{F}^{1B},\,\,\mathsf{F}^{1A})=326\,\mathsf{Hz},\,1\mathsf{F},\,\,\mathsf{F}^{1B}),\,-136.6\,\,(\mathsf{m},\,1\mathsf{F},\,\,\mathsf{F}^2),\\ \end{array}\right.$$

-146.8 (q (1:1:1:1), ¹*J*(F, B) = 40 Hz, 3F, BF_3^{-}). ¹¹B NMR (aHF, -20 °C): δ -0.2 (s, $\Delta \nu_{1/2}$ = 90 Hz, BF_3^{-}).

4.18. Reaction of [Bu₄N][cis-C₂F₅CF=CFBF₃] with BrF₃ in PFB

A cold (-20 °C) solution of BrF₃ (0.29 mmol) in PFB (0.1 mL) was added to a cold (-20 °C) stirred solution of $[Bu_4N][cis-C_2F_5CF = CFBF_3]$ (0.29 mmol) in PFB (0.6 mL). The colorless solution was stirred at -20 °C for 1 h and warmed to 20 °C. The ¹¹B and ¹⁹F NMR spectra showed resonances of $[C_2F_5CFBrCF_2BF_3]^-$, $C_2F_5CF=CF_2$, and $[BF_4]^-$ (53:37:10) besides signals of PFB.

[Bu₄N][C₂F₅CFBrCF₂BF₃] (**TBA-11**). ¹⁹F NMR (PFB, 24 °C): δ -77.1 (dt, ⁴*J*(F⁴, F²) = 5 Hz, ³*J*(F⁴, F³) = 10 Hz, 3F, F⁴), -113.6 (d, ²*J*(F^{3A}, F^{3B}) = 284 Hz, 1F, F^{3A}), -115.1 (d, ²*J*(F^{3B}, F^{3A}) = 284 Hz, 1F, F^{3B}), -117.5 (d, ²*J*(F^{1A}, F^{1B}) = 324 Hz, 1F, F^{1A}), -121.1 (d, ²*J*(F^{1B}, F^{1A}) = 324 Hz, 1F, F^{1B}), -134.6 (m, 1F, F²), -147.0 (m, 3F, BF₃⁻). ¹¹B NMR (PFB, 24 °C): δ -1.0 (tq, ²*J*(B, F¹) = 20 Hz, ¹*J*(B, F) = 40 Hz, BF₃⁻).

4.19. Reaction of $K[C_6F_{13}BF_3]$ with $[BrF_2][SbF_6]$

A cold (-15 °C) solution of $[BrF_2][SbF_6]$ (56 mg, 0.15 mmol) in aHF (0.7 mL) was added in portions to a cold (-15 °C) stirred solution of $K[C_6F_{13}BF_3]$ (151 mg, 0.35 mmol) in aHF (1.5 mL). After stirring at 20 °C for 6 h only signals of unchanged $K[C_6F_{13}BF_3]$ were detected in the solution.

5. Conclusions

Reactions of BrF_3 with R_FBF_2 (R_F = perfluorinated aryl, alkenyl, and alkynyl group) in weakly coordinating solvents like CH₂Cl₂ or better in PFB, PFP present a convenient preparative route to bis(perfluoroorganyl)bromonium salts. Comparing reactions of BrF₃ with C₆F₅BF₂, C₆F₅SiF₃, and C₆F₅SiMe₃ showed the influence of the acidity (fluoride affinity) on the reaction rate for the first and second F/C₆F₅ substitution step: C₆F₅BF₂ gives only bromonium salts, C₆F₅SiF₃ allowed the aimed synthesis as well of C₆F₅BrF₂ as of $[(C_6F_5)_2Br]^+$ salts, whereas in case of $C_6F_5SiMe_3$ only $C_6F_5BF_2$ is accessible. The 1:2 reaction of BrF_3 with $C_6F_{13}BF_2$ in PFP gave $C_6F_{13}Br$ and C_6F_{14} (1:1) as the only perfluoroalkyl compounds, which may be considered as products of decomposition of the unstable salt $[(C_6F_{13})_2Br][C_6F_{13}BF_3]$. The instability can be attributed to electrostatic repulsion between high partial positive charge on bromine and both ipso carbon atoms of the perfluoroalkyl groups. The 3:2 molar reaction of BrF_3 with $(C_6F_5)_3B$ (more acidic than $C_6F_5BF_2$) ended with $[(C_6F_5)_2Br][(C_6F_5)_nBF_{4-n}]$ salts with anion mixtures (n = 0-3) and showed that boranes $(C_6F_5)_nBF_{3-n}$ (n = 1-3) operate here as intermediate transfer reagents. Finally, salts [(C₆F₅)₂Br]Y can be prepared from BrF₃ or [BrF₂][SbF₆] (Br^{III}electrophile) and K[C₆F₅BF₃] (C-nucleophile) in aHF. This route failed for the synthesis of perfluoroalkenylbromonium and alkylbromonium salts $[(R_F)_2Br]Y$.

Acknowledgement

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- A.N. Nesmeyanov, T.P. Tolstaya, L.S. Isaeva, Dokl. Akad. Nauk SSSR 104 (1955) 872–875 (Chem. Abstr. 50 (1956) 11266).
- [2] A.N. Nesmeyanov, T.P. Tolstaya, L.S. Isaeva, Dokl. Akad. Nauk SSSR 117 (1957) 996–999 (Chem. Abstr. 52 (1958) 8069).
- [3] A.N. Nesmeyanov, A.N. Vanchikov, I.N. Lisichkina, N.S. Khrushcheva, T.P. Tolstaya, Dokl. Akad. Nauk SSSR 254 (1980) 652–656 (Chem. Abstr. 94 (1981) 174489).
- [4] A.N. Nesmeyanov, A.N. Vanchikov, I.N. Lisichkina, V.V. Lazarev, T.P. Tolstaya, Dokl. Akad. Nauk. SSSR 255 (1980) 1136-1140 (Chem. Abstr. 95 (1981) 24402).

- [5] A.N. Nesmeyanov, A.N. Vanchikov, I.N. Lisichkina, V.V. Grushin, T.P. Tolstaya, Dokl. Akad. Nauk. SSSR 255 (1980) 1386–1389 (Chem. Abstr. 95 (1981) 6664).
- [6] G.A. Olah, Halonium Ions, Wiley, New York, 1975.
- [7] G.A. Olah, K.K. Laali, Q. Wang, Onium Ions, Wiley, New York, 1998, 246-268.
- [8] T.W. Bastock, M.E. Harley, A.E. Pedler, J.C. Tatlow, J. Fluorine Chem. 6 (1975) 331-355.
- [9] V.V. Bardin, G.G. Furin, G.G. Yakobson, Zh. Org. Khim. 17 (1981) 999–1004;
 V.V. Bardin, G.G. Furin, G.G. Yakobson, J. Org. Chem. USSR (Eng. Transl.) 17 (1981) 879–884.
- [10] V.V. Bardin, G.G. Furin, G.G. Yakobson, J. Fluorine Chem. 23 (1983) 67-86.
- [11] H.-J. Frohn, M. Giesen, D. Welting, G. Henkel, Eur. J. Solid State Inorg. Chem. 33 (1996) 841–853.
- [12] H.-J. Frohn, M. Hirschberg, A. Wenda, V.V. Bardin, J. Fluorine Chem. 129 (2008) 459-473.
- [13] J. Helber, H.-J. Frohn, A. Klose, T. Scholten, ARKIVOC vi (2003) 71-82.
- [14] H.-J. Frohn, V.V. Bardin, Organometallics 20 (2001) 4750-4762.
- [15] H.-J. Frohn, V.V. Bardin, in: K.K. Laali (Ed.), Recent Developments in Carbocation and Onium Ion Chemistry, ACS Symposium Series 965, ACS, Washington, DC, 2007, pp. 428–457.
- [16] T. Cyr, S. Brownstein, J. Inorg. Nucl. Chem. 39 (1977) 2143-2145.
- [17] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 24 (1984) 9–15.
- [18] K. Koppe, V. Bilir, H.-J. Frohn, H.P.A. Mercier, G.J. Schrobilgen, Inorg. Chem. 46 (2007) 9425–9437.
- [19] V.V. Bardin, H.-J. Frohn, Main Group Met. Chem. 25 (2002) 589-613.
- [20] H.-J. Frohn, V.V. Bardin, Mendeleev Commun. 17 (2007) 137-138.
- [21] T. Surles, H.H. Hyman, L.A. Quaterman, A.I. Popov, Inorg. Chem. 10 (1971) 611– 613.
- [22] H. Meinert, U. Gross, J. Fluorine Chem. 2 (1972/1973) 381-386.
- [23] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 628 (2002) 1853-1856.
- [24] H.-J. Frohn, P. Barthen, F. Bailly, K. Koppe, in: Proceedings 1st Int. Conf. Hypervalent Iodine, Thessalonki September, (2001), pp. 109–111.

- [25] H.-J. Frohn, F. Bailly, D. Welting, V.V. Bardin, J. Fluorine Chem. 130 (2009) 301– 307.
- [26] A. Abo-Amer, H.-J. Frohn, Chr. Steinberg, U. Westphal, J. Fluorine Chem. 127 (2006) 1311–1323.
- [27] H.-J. Frohn, F. Bailly, V.V. Bardin, Mendeleev Commun. 19 (2009) 67-68.
- [28] H.-J. Frohn, T. Schroer, J. Fluorine Chem. 112 (2001) 259-264.
- [29] (a) E.S. Lo, J.D. Readio, S.D. Osborn, J. Org. Chem. 38 (1973) 907-909;
- (b) B.-N. Huang, A. Haas, M. Lieb, J. Fluorine Chem. 36 (1987) 49–62.
 [30] T.I. Filyakova, M.I. Kodess, A.Ya. Zapevalov, Zh. Org. Khim. 34 (1998) 1317–1323; T.I. Filyakova, M.I. Kodess, A.Ya. Zapevalov, Russ. J. Org. Chem. 34 (1998) 1256–
- 1259. [31] V.V. Bardin, J. Fluorine Chem. 89 (1998) 195–211.
- [32] H.-J. Frohn, M.E. Hirschberg, R. Boese, D. Bläser, U. Flörke, Z. Anorg. Allg. Chem. 634 (2008) 2539–2550.
- [33] H.-J. Frohn, M. Giesen, A. Klose, A. Lewin, V.V. Bardin, J. Organomet. Chem. 506 (1996) 155–164.
- [34] M. Fild, O. Glemser, G. Christoph, Angew. Chem. 76 (1964) 953.
- [35] N.Yu. Adonin, V.V. Bardin, H.-J. Frohn, Z. Anorg. Allg. Chem. 633 (2007) 647-652.
- [36] H.-J. Frohn, H. Franke, P. Fritzen, V.V. Bardin, J. Organomet. Chem. 598 (2000) 127– 135.
- [37] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 627 (2001) 2499-2505.
- [38] A.W. Laubengayer, D.S. Sears, J. Am. Chem. Soc. 67 (1945) 164-167.
- [39] H.-J. Frohn, N.Yu. Adonin, V.V. Bardin, Z. Anorg. Allg. Chem. 629 (2003) 2499– 2508.
- [40] V.V. Bardin, N.Yu. Adonin, H.-J. Frohn, J. Fluorine Chem. 128 (2007) 699-702.
- [41] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 627 (2001) 15-16.
- [42] H.-J. Frohn, F. Bailly, V.V. Bardin, Z. Anorg. Allg. Chem. 628 (2001) 723-724.
- [43] V.V. Bardin, S.G. Idemskaya, H.-J. Frohn, Z. Anorg. Allg. Chem. 628 (2002) 883–895.
- [44] T.E. Stevens, J. Org. Chem. 26 (1961) 1627-1630.
- [45] P.L. Coe, S.F. Sellers, J.C. Tatlow, H.C. Fielding, G. Whittaker, J. Fluorine Chem. 18 (1981) 417-439.